Part Number Hot Search : 
AD9704 C3406 100LVEL MICONDUC CKFS2632 1N475 TC372 AC220
Product Description
Full Text Search
 

To Download LX64B-5FN100C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ispGDX2TM Device Datasheet
June 2010
Select Devices Discontinued!
Product Change Notifications (PCNs) #09-10 has been issued to discontinue select devices in this data sheet. The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status.
Product Line LX64V Ordering Part Number LX64V-3F100C LX64V-3FN100C LX64V-5F100C LX64V-5FN100C LX64B-3F100C LX64B-3FN100C LX64B-5F100C LX64B-5FN100C LX64C-3F100C LX64C-3FN100C LX64C-5F100C LX64C-5FN100C LX128V-32F208C LX128V-32FN208C LX128V-5F208C LX128V-5FN208C LX128B-32F208C LX128B-32FN208C LX128B-5F208C LX128B-5FN208C LX128C-32F208C LX128C-32FN208C LX128C-5F208C LX128C-5FN208C LX256V-35F484C LX256V-35FN484C LX256V-5F484C LX256V-5FN484C LX256B-35F484C LX256B-35FN484C LX256B-5F484C LX256B-5FN484C Product Status Active / Orderable Reference PCN
LC64B
Discontinued
PCN#09-10
LX64C
Discontinued
PCN#09-10
LX128V
Active / Orderable
LX128B
Discontinued
PCN#09-10
LX128C
Discontinued
PCN#09-10
LX256V
Active / Orderable
LX256B
Discontinued
PCN#09-10
5555 N.E. Moore Ct.
Hillsboro, Oregon 97124-6421 Phone (503) 268-8000 Internet: http://www.latticesemi.com
FAX (503) 268-8347
Product Line LX256C
LX64EV
LX64EB
LX64EC
LX128EV
LX128EB
LX128EC
LX256EV
Ordering Part Number LX256C-35F484C LX256C-35FN484C LX256C-5F484C LX256C-5FN484C LX64EV-3F100C LX64EV-3FN100C LX64EV-5F100C LX64EV-5F100I LX64EV-5FN100C LX64EV-5FN100I LX64EB-3F100C LX64EB-3FN100C LX64EB-5F100C LX64EB-5F100I LX64EB-5FN100C LX64EB-5FN100I LX64EC-3F100C LX64EC-3FN100C LX64EC-5F100C LX64EC-5F100I LX64EC-5FN100C LX64EC-5FN100I LX128EV-32F208C LX128EV-32FN208C LX128EV-5F208C LX128EV-5F208I LX128EV-5FN208C LX128EV-5FN208I LX128EB-32F208C LX128EB-32FN208C LX128EB-5F208C LX128EB-5F208I LX128EB-5FN208C LX128EB-5FN208I LX128EC-32F208C LX128EC-32FN208C LX128EC-5F208C LX128EC-5F208I LX128EC-5FN208C LX128EC-5FN208I LX256EV-35F484C LX256EV-35FN484C LX256EV-5F484C LX256EV-5F484I LX256EV-5FN484C LX256EV-5FN484I
Product Status Discontinued
Reference PCN PCN#09-10
Active / Orderable
Discontinued
PCN#09-10
Discontinued
PCN#09-10
Active / Orderable
Discontinued
PCN#09-10
Discontinued
PCN#09-10
Active / Orderable
5555 N.E. Moore Ct.
Hillsboro, Oregon 97124-6421 Phone (503) 268-8000 Internet: http://www.latticesemi.com
FAX (503) 268-8347
Product Line
LX256EB
LX256EC
Ordering Part Number LX256EB-35F484C LX256EB-35FN484C LX256EB-5F484C LX256EB-5F484I LX256EB-5FN484C LX256EB-5FN484I LX256EC-35F484C LX256EC-35FN484C LX256EC-5F484C LX256EC-5F484I LX256EC-5FN484C LX256EC-5FN484I
Product Status
Reference PCN
Discontinued
PCN#09-10
Discontinued
PCN#09-10
5555 N.E. Moore Ct.
Hillsboro, Oregon 97124-6421 Phone (503) 268-8000 Internet: http://www.latticesemi.com
FAX (503) 268-8347
ispGDX2TM Family
September 2005
Features
Includes High, Performance w-Cost Lo "E-Series"
High Performance Interfacing and Switching
Data Sheet
Two Options Available
* High-performance sysHSI (standard part number) * Low-cost, no sysHSI ("E-Series")
SE LE D IS C CT OD NE TI VI NC UE ED S
* High bandwidth - Up to 12.8 Gbps (SERDES) - Up to 38 Gbps (without SERDES) * Up to 16 (15x10) FIFOs for data buffering * High speed performance - fMAX = 360MHz - tPD = 3.0ns - tCO = 2.9ns - tS = 2.0ns * Built-in programmable control logic capability * I/O intensive: 64 to 256 I/Os * Expanded MUX capability up to 188:1 MUX * * * * Frequency synthesis and skew management Clock multiply and divide capability Clock shifting up to +/-2.35ns in 335ps steps Up to four PLLs * * * * *
High Performance Bus Switching
sysHSI Blocks Provide up to 16 High-speed Channels
Serializer/de-serializer (SERDES) included Clock Data Recovery (CDR) built in 800 Mbps per channel LVDS differential support 10B/12B support - Encoding / decoding - Bit alignment - Symbol alignment * 8B/10B support - Bit alignment - Symbol alignment * Source Synchronous support
sysCLOCKTM PLL
Flexible Programming and Testing
sysIOTM Interfacing
* LVCMOS 1.8, 2.5, 3.3 and LVTTL support for standard board interfaces * SSTL 2/3 Class I and II support * HSTL Class I, III and IV support * GTL+, PCI-X for bus interfaces * LVPECL, LVDS and Bus LVDS differential support * Hot socketing * Programmable drive strength Table 1. ispGDX2 Family Selection Guide
I/Os 64 4
* IEEE 1532 compliant In-System Programmability (ISPTM) * Boundary scan test through IEEE 1149.1 interface * 3.3V, 2.5V or 1.8V power supplies * 5V tolerant I/O for LVCMOS 3.3 and LVTTL interfaces
ispGDX2-64/E
ispGDX2-128/E 128 8
ispGDX2-256/E 256 16
GDX Blocks
tPD tS
3.0ns 2.9ns
3.2ns 3.1ns
3.5ns 3.2ns
2.0ns
2.0ns
2.0ns
tCO
fMAX (Toggle)
360MHz 11Gbps 4 32 2
330MHz 21Gbps 8 64 2
300MHz 38Gbps 16 128 4
Max Bandwidth
SERDES1, 2
3.2Gbps
6.4Gbps
12.8Gbps
Without SERDES3
sysHSI Channels PLLs Package
2
LVDS/Bus LVDS (Pairs)
100-ball fpBGA
208-ball fpBGA
484-ball fpBGA
1. Max number of SERDES channels per device * 800Mbps 2. "E-Series" does not support sysHSI. 3. fMAX (Toggle) * maximum I/Os divided by 2.
(c) 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1
gdx2fam_13
Lattice Semiconductor
Figure 1. ispGDX2 Block Diagram (256-I/O Device)
sysIO Bank
sysHSI Block
ispGDX2 Family Data Sheet
sysIO Bank SERDES FIFO SERDES FIFO
sysHSI Block
SE LE D IS C CT OD NE TI VI NC UE ED S
FIFO FIFO
sysHSI Block sysHSI Block
sysCLOCK PLL
SERDES
SERDES
sysCLOCK PLL
GDX Block
GDX Block
GDX Block
GDX Block
GDX Block
GDX Block
SERDES
SERDES SERDES SERDES SERDES
FIFO
FIFO
sysIO Bank
Introduction
The ispGDX2TM family is Lattice's second generation in-system programmable generic digital crosspoint switch for high speed bus switching and interface applications. The ispGDX2 family is available in two options. The standard device supports sysHSI capability for ultra fast serial communications while the lower-cost "E-series" supports the same high-performance FPGA fabric without the sysHSI Block. This family of switches combines a flexible switching architecture with advanced sysIO interfaces including high performance sysHSI Blocks, and sysCLOCK PLLs to meet the needs of the today's high-speed systems. Through a muliplexer-intensive architecture, the ispGDX2 facilitates a variety of common switching functions. The availability of on-chip control logic further enhances the power of these devices. A high-performance solution, the family supports bandwidth up to 38Gbps. Every device in the family has a number of PLLs to provide the system designer with the ability to generate multiple clocks and manage clock skews in their systems.
sysIO Bank sysIO Bank
GDX Block
GDX Block
SERDES
FIFO FIFO FIFO
FIFO
Global Routing Pool (GRP)
GDX Block GDX Block
GDX Block GDX Block
SERDES
FIFO FIFO
sysIO Bank
SERDES sysHSI Block
sysCLOCK PLL
sysHSI Block
GDX Block
GDX Block
GDX Block
GDX Block
FIFO
FIFO
FIFO
FIFO
sysHSI Block
SERDES
SERDES
SERDES
SERDES
sysHSI Block
sysCLOCK PLL
sysIO Bank
sysIO Bank
ISP & Boundary Scan Test Port
2
Lattice Semiconductor
ispGDX2 Family Data Sheet
The sysIO interfaces provide system-level performance and integration. These I/Os support various modes of LVCMOS/LVTTL and support popular high-speed standard interfaces such as GTL+, PCI-X, HSTL, SSTL, LVDS and Bus-LVDS. The sysHSI Blocks further extend this capability by providing high speed serial data transfer capability. Devices in the family can operate at 3.3V, 2.5V or 1.8V core voltages and can be programmed in-system via an IEEE 1149.1 interface that is compliant with the IEEE 1532 standard. Voltages required for the I/O buffers are independent of the core voltage supply. This further enhances the flexibility of this family in system designs. Typical applications for the ispGDX2 include multi-port multi-processor interfaces, wide data and address bus multiplexing, programmable control signal routing and programmable bus interfaces. Table 1 shows the members of the ispGDX2 family and their key features.
SE LE D IS C CT OD NE TI VI NC UE ED S
Architecture
Global Routing Pool (GRP) GDX Block
3
The ispGDX2 devices consist of GDX Blocks interconnected by a Global Routing Pool (GRP). Signals interface with the external system via sysIO banks. In addition, each GDX Block is associated with a FIFO and a sysHSI Block to facilitate the transfer of data on- and off-chip. Figure 1 shows the ispGDX2 block diagram. Each GDX Block can be individually configured in one of four modes: * Basic (No FIFO or SERDES) * FIFO Only * SERDES Only * SERDES and FIFO Each sysIO bank has its own I/O power supply and reference voltage. Designers can use any output standard within a bank that is compatible with the power supply. Any input standard may be used, providing it is compatible with the reference voltage. The banks are independent.
The ispGDX2 architecture is organized into GDX Blocks, which are connected via a Global Routing Pool. The innovative GRP is optimized for routability, flexibility and speed. All the signals enter via the GDX Block. The block supplies these either directly or in registered form to the GRP. The GRP routes the signals to different blocks, and provides separate data and control routing. The data path is optimized to achieve faster speed and routing flexibility for nibble oriented signals. The control routing is optimized to provide high-speed bit oriented routing of control signals. There are some restrictions on the allocation of pins for optimal bus routing. These restrictions are considered by the software in the allocation of pins.
The blocks are organized in a "block" (nibble) manner, with each GDX Block providing data flow and control logic for 16 I/O buffers. The data flow is organized as four nibbles, each nibble containing four Multiplexer Register Blocks (MRBs). Data for the MRBs is provided from 64 lines from the GRP. Figure 2 illustrates the groups of signals going into and out of a GDX Block. Control signals for the MRBs are provided from the Control Array. The Control Array receives the 32 signals from the GRP and generates 16 control signals: eight MUX Select, four Clock/Clock Enable, two Set/Reset and two Output Enable. Each nibble is controlled via two MUX select signals. The remaining control signals go to all the MRBs. Besides the control signals from the Control Array, the following global signals are available to the MRBs in each GDX Block: four Clock/Clock Enable, one reset/preset, one power-on reset, two of four MUX select (two of two in 64 I/O), four Output Enable (two in 64 I/O) and Test Out Enable (TOE).
Lattice Semiconductor MUX and Register Block (MRB)
ispGDX2 Family Data Sheet
Every MRB Block has a 4:1 MUX (I/O MUX) and a set of three registers which are connected to the I/O buffers, FIFO and sysHSI Blocks. Multiple MRBs can be combined to form large multiplexers as described below. Figure 3 shows the structure of the MRB. Each of the three registers in the MRB can be configured as edge-triggered D-type flip-flop or as a level sensitive latch. One register operates on the input data, the other output data and the last register synchronizes the output enable function. The input and output data signals can bypass each of their registers. The polarity of the data out and output enable signals can be selected. The Output and OE register share the same clock and clock enable signals. The Input register has a separate clock and clock enable. The initialization signals of each register can be independently configured as Set or Reset. These registers have programmable polarity control for Clock, Clock Enable and Set/Reset. The output enable register input can be set either by one of the two output enables generated locally from the Control Array or from one of the four (two in 64 I/O) Global OE enable pins. In addition to the local clock and clock enable signals, each MRB has access to Global Clock, Clock Enable, Reset and TOE nets.
SE LE D IS C CT OD NE TI VI NC UE ED S
4
Lattice Semiconductor
Figure 2. GDX Block
GRP
32 bits
MUX Control Select
8 8
ispGDX2 Family Data Sheet
GDX Block
sysIO Bank
Control Array
SE LE D IS C CT OD NE TI VI NC UE ED S
OE IN
8 2
Nibble 0
4 bits
MUX and Register Block (MRB) 0
OUT
8
OE IN
2
4 bits
MUX and Register Block (MRB) 1
OUT
8
2
4 bits
MUX and Register Block (MRB) 2
OE IN
OUT
8
OE IN
2
4 bits
MUX and Register Block (MRB) 3
OUT
8
2
16 bits
Nibble 1 MRBs 4-7
OE IN OUT OE IN OUT OE IN OUT
4
8
2
Nibble 2 MRBs 8-11
16 bits
4
8
2
16 bits
Nibble 3 MRBs 12-15
4
The output register of the MRB has a built-in bi-directional shift register capability. Each output register corresponding to MRB "n", receives data output from its two adjacent MRBs, MRB (n-1) and MRB (n+1), to provide shift register capability. Like the output register, each input register of the MRB has built-in shift register capability. Each input register can receive data from its two adjacent MRB input registers, to provide bi-directional shift register capability. The chaining crosses GDX Block boundaries. The chain of input registers and the chain of output registers can be combined as one shift register via the GRP.
5
Lattice Semiconductor
ispGDX2 Family Data Sheet
The four data inputs to the 4:1 MUX come from the GRP. The output of this MUX connects to the output register. A fast feedback path from the MUX to the GRP allows wider MUXes to be built. Table 2 summarizes the various MUX sizes and delay levels. Table 2. MUX Size Versus Internal Delay
MUX Sizes 4:1 Up to 16:1 Up to 64:1 Levels of Internal GRP Delays One Level Two Levels
SE LE D IS C CT OD NE TI VI NC UE ED S
Three Levels Four Levels Up to 188:1 (with ispGDX2-256)
Figure 3. ispGDX2 Family MRB
MUX Select Control Array Signals
Global Signals 2-4
GDX Control Array 4 2
4
2
OE
D/L
Q
CK/CE
MUX Select Global Signals
OE
CK
ClK
OE Reg/Latch
TOE
CE
CE Set
Reset
VCC
Flags* (FIFO, SERDES or PLL)
Set/Reset
CK/CE
From GRP
from Out_Reg(n-1) from Out_Reg(n+1)
OE
D/L
Q
to Out_Reg(n-1)
ClK
Out Reg/Latch
to Out_Reg(n+1)
CE
Set
Reset
VCC
S/R
Global Resetb
To GRP
Delay
FIFO Out*
from IN_Reg(n-1) from IN_Reg(n+1) CK
D/L
Q
to IN_Reg(n-1) to IN_Reg(n+1)
ClK
Input Reg/Latch
CE
CE
Set
Reset
S/R
Global Resetb
*Selected MRBs see Logic Signal Connection Table for details
Control Array
The control array generates control signals for the 16 MRBs within a GDX Block. The true and complement forms of 32 inputs from the GRP are available in the control array. The 20 NAND terms can use any or all of these inputs to form the control array outputs. Two AND terms are combined with a NOR term to form Set/Reset and OE signals. Figure 4 illustrates the control array.
6
Lattice Semiconductor
Figure 4. ispGDX2 Family Control Array
32 Inputs from Control GRP
ispGDX2 Family Data Sheet
Each connection is programmable.
SE LE D IS C CT OD NE TI VI NC UE ED S
MUX Select to Nibble 0 MUX Select to Nibble 1 MUX Select to Nibble 2 MUX Select to Nibble 3 To MRB Clock/ Clock Enable
On selected blocks, this signal can reset the M Divider of the PLL.
To MRB Set/Reset
To MRB Output Enable
sysIO Banks
The inputs and outputs of ispGDX2 devices are divided into eight sysIO banks, where each bank is capable of supporting different I/O standards. The number of I/Os per bank is 32, 16 and 8 for the 256-, 128- and 64-I/O devices respectively. Each sysIO bank has its own I/O supply voltage (VCCO) and reference voltage (VREF), allowing each bank complete independence from the other banks. Each I/O within a bank can be individually configured to any standard consistent with the VCCO and VREF settings. Figure 5 shows the I/O banks for the ispGDX2-256 device. The I/O of the ispGDX2 devices contain a programmable strength and slew rate tri-state output buffer, a programmable input buffer, a programmable pull-up resistor, a programmable pull-down resistor and a programmable buskeeper latch. These programmable capabilities allow the support of a wide range of I/O standards.
7
Lattice Semiconductor
Figure 5. ispGDX2-256 sysIO Banks
VCCO4 GND VREF4 GND VREF3 VCCO3
ispGDX2 Family Data Sheet
SE LE D IS C CT OD NE TI VI NC UE ED S
sysIO Bank 4 sysIO Bank 3 VCCO5 VREF5 GND VCCO2 VREF2 GND sysIO Bank 5 sysIO Bank 2 VCCO6 VCCO1 VREF1 GND VREF6 GND sysIO Bank 6 sysIO Bank 1 sysIO Bank 7 sysIO Bank 0 GND VREF7 VCCO7 GND VREF0 VCCO0
There are three classes of I/O interface standards implemented in the ispGDX2 devices. The first is the non-terminated, single-ended interface; it includes the 3.3V LVTTL standard along with the 1.8V, 2.5V and 3.3V LVCMOS interface standards. The slew rate and strength of these output buffers can be controlled individually. Additionally, PCI 3.3, PCI-X and AGP-1X are all subsets of this interface type. The second interface class implemented is the terminated, single-ended interface standard. This group of interfaces includes different versions of SSTL and HSTL interfaces along with CTT and GTL+. Use of these I/O interfaces requires an additional VREF signal. At the system level, a termination voltage, VTT, is also required. Typically, an output will be terminated to VTT at the receiving end of the transmission line it is driving. The final types of interfaces implemented are the differential standards LVPECL, LVDS and Bus LVDS. Table 3 shows the I/O standards supported by the ispGDX2 devices along with nominal VCCO, VREF and VTT. The ispGDX2 family also features 5V tolerant I/O. I/O banks with VCCO = 3.3V may have inputs driven to a maximum of 5.5V for easy interfacing with legacy systems. Up to 64 I/O pins per device may be driven by 5V inputs.
8
Lattice Semiconductor
Table 3. ispGDX2 Supported I/O Standards
sysIO Standard LVCMOS 3.3 LVCMOS 2.5 LVCMOS 1.8 LVTTL PCI 3.3 PCI -X Nominal VCCO 3.3V 2.5V 1.8V 3.3V 3.3V 3.3V 3.3V Nominal VREF -- -- -- -- -- -- --
ispGDX2 Family Data Sheet
Nominal VTT -- -- -- -- -- -- --
SE LE D IS C CT OD NE TI VI NC UE ED S
AGP-1X SSTL3 class I & II 3.3V 1.5V 1.5V SSTL2 class I & II 2.5V 1.25V 1.5V 1.25V 1.5V CTT 3.3 3.3V CTT 2.5 2.5V 1.25V 0.9V 1.25V HSTL class I 1.5V 0.75V 0.9V 1.0V -- -- -- 0.75V 1.5V 1.5V -- -- -- HSTL class III 1.5V 0.75V HSTL class IV 1.5V GTL+ LVDS 1.8/2.5/3.3V 3.3V 2.5/3.3V 2.5/3.3V LVPECL1, 2, 3 Bus-LVDS
1. LVPECL drivers require three resistor pack (see Figure 17). 2. Depending on the driving LVPECL output specification, GDX2 LVPECL input driver may require terminating resistors. 3. For additional information on LVPECL refer to Lattice technical note number TN1000, sysIO Design and Usage Guidelines.
The dedicated inputs support a subset of the sysIO standards indicated in Table 4. These inputs are associated with a bank consistent with their location. Table 4. I/O Standards Supported by Dedicated Inputs
LVCMOS Yes Yes Global OE Pins Resetb
LVDS No No
All other ASIC I/Os Yes2 Yes2 Yes2 Yes2 No No
Global MUX Select Pins
Yes
No
Global Clock/Clock Enables ispJTAGTM Port
Yes
Yes No No
Yes1 Yes
TOE
1. LVCMOS as defined by the VCCJ pin voltage. 2. No PCI clamp.
For more information on the sysIO capability, please refer to Lattice technical note number TN1000, sysIO Design and Usage Guidelines.
sysCLOCK PLL
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) along the various dividers and reset and feedback signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are deskewed either at the board level or the device level. Figure 6 shows the ispGDX2 PLL block diagram. Each PLL has a set of PLL_RST, PLL_FBK and PLL_LOCK signals. In order to facilitate the multiply and divide capabilities of the PLL, each PLL has associated dividers. The M divider is used to divide the clock signal, while the 9
Lattice Semiconductor
ispGDX2 Family Data Sheet
N divider is used to multiply the clock signal. The K divider is used to provide a divided clock frequency of the adjacent PLL. This output can be routed to the global clock net. The V divider is used to provide lower frequency output clocks, while maintaining a stable, high frequency output from the PLL's VCO circuit. The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and clock-to-out times for better performance. For more information on the PLL, please refer to Lattice technical note number TN1003, sysCLOCK PLL Design and Usage Guidelines. Figure 6. sysCLOCK PLL
SE LE D IS C CT OD NE TI VI NC UE ED S
PLL_LOCK CLK_OUT CLK_IN Input Clock (M) Divider 1 to 32
Programmable +Delay
--------------------
PLL (n)
Post-scalar (V) Divider 1, 2, 4, 8, 16, 32
Clock Net
Programmable -Delay
PLL_RST
Clock (K) Divider 2, 4, 8, 16, 32
To Adjacent_PLL
From Adjacent_PLL
Feedback Divider (N) X 1 to 32
PLL_FBK
There are four global clock networks routed to each MRB block. These global clocks, CLK0-3, can either be generated by the PLL circuits or supplied externally. External clock pins can be configured as single-ended or differential (LVDS) input. Figure 7 illustrates how the sysCLOCK PLL inputs and outputs can be routed to the I/O pins or general routing. Figure 10 shows the clock network for the ispGDX2-256 and Figure 8 shows the clock networks for ispGDX2-128 and ispGDX2-64. The Reset (0) pin from the Control Array of selected GDX Blocks can be programmed to reset the M Divider of the PLLs. This provides a means for generating the reset signal internally. Table 5 details which GDX Block provides reset to the PLLs. Table 5. Internal Reset Input of the PLL (M Divider)
PLL0
PLL1 -- --
PLL2
PLL3 -- --
ispGDX2-256 ispGDX2-128 ispGDX2-64
GDX Block 5A GDX Block 2A
GDX Block 7B
GDX Block 1A
GDX Block 3B
GDX Block 0A GDX Block 1B
GDX Block 0A
10
Lattice Semiconductor
Figure 7. I/O Pin Connection to the sysCLOCK PLL1
PLL_LOCK
ispGDX2 Family Data Sheet
CLK_OUT
SE LE D IS C CT OD NE TI VI NC UE ED S
GCLK_IN
Input Clock (M) Divider / 1 to 32
Programmable + Delay
Output Reg/ Latch
-------------------Programmable - Delay
PLL (n)
Post-scalar (V) Divider / 1, 2, 4, 8, 16, 32
Clock Net
Clock (K) Divider / 2, 4, 8, 16, 32
To Adjacent_PLL
From Adjacent_PLL
Feedback Divider (N) x 1 to 32
Input Reg/ Latch
Delay
GRP
GDX Block
PLL_FBK
PLL_RST
Resetb (0)
Control Array (from selected blocks)
GCLK_IN
1. Some pins are shared. See Logic Signal Connections Table for details.
11
Lattice Semiconductor
Figure 8. ispGDX2-64 CLOCK Network
sysIO Interface sysCLOCK CLK0 K(0) PLL (0)
ispGDX2 Family Data Sheet
Clock Net
MRB
SE LE D IS C CT OD NE TI VI NC UE ED S
CLK_OUT0 GCLK/CE1 VREF1 + Clock Net Reg/ Latch CLK_OUT2 CLK2 K(2) PLL (2) GCLK/CE2 VREF2 + Clock Net Reg/ Latch GCLK/CE3 VREF3 + Clock Net Reg/ Latch
GCLK/CE0 VREF0
+ -
Clock Net
Reg/ Latch
Figure 9. ispGDX2-128 CLOCK Network
sysIO Interface
sysCLOCK CLK0
Clock Net
MRB
K(0) PLL (0)
GCLK/CE0 VREF0
+ -
Clock Net
Reg/ Latch
CLK_OUT0
GCLK/CE1
VREF1
+ -
Clock Net
Reg/ Latch
CLK_OUT2
CLK2
K(2) PLL (2)
GCLK/CE2
VREF2
+ -
Clock Net
Reg/ Latch
GCLK/CE3 VREF3
+ -
Clock Net
Reg/ Latch
12
Lattice Semiconductor
Figure 10. ispGDX2-256 CLOCK Network
sysIO Interface sysCLOCK CLK0 K(0) PLL (0)
ispGDX2 Family Data Sheet
Clock Net
MRB
SE LE D IS C CT OD NE TI VI NC UE ED S
GCLK/CE0 VREF0 + Clock Net Reg/ Latch CLK_OUT0 CLK1 K(1) PLL (1) GCLK/CE1 VREF1 + Clock Net Reg/ Latch CLK_OUT1 CLK2 K(2) PLL (2) GCLK/CE2 VREF2 + Clock Net Reg/ Latch CLK_OUT2 CLK3 K(3) PLL (3) GCLK/CE3 VREF3 + Clock Net Reg/ Latch CLK_OUT3
13
Lattice Semiconductor
ispGDX2 Family Data Sheet
Operating Modes
All the GDX Blocks in the ispGDX2 family can be programmed in four modes: Basic, FIFO only, SERDES only, and FIFO with SERDES mode. In basic mode, the SERDES and FIFO are disabled and the MUX output of the MRB connects to the output register. Inputs are connected to the GRP via the MRB. Figure 11 shows the four different operating modes. Precise detail of the FIFO and SERDES connections is provided in their respective sections. Figure 11. Four Operating Modes of ispGDX2 Devices
SE LE D IS C CT OD NE TI VI NC UE ED S
Basic Mode GRP GDX Block FIFO SERDES sysIO Bank FIFO Mode GRP GDX Block FIFO SERDES sysIO Bank SERDES Mode
(FIFO in Flow-through Mode)
GRP
GDX Block
FIFO*
SERDES
sysIO Bank
SERDES and FIFO Mode GRP
GDX Block
FIFO
SERDES
sysIO Bank
*FIFO held in RESET for SERDES-only mode.
FIFO Operations
Each GDX Block is associated with a 10-bit wide and 15-word deep (10x15) RAM. This RAM, combined with two address counters and two comparators, is used to implement a FIFO as a "circular queue". The FIFO has separate clocks, the Read Clock (RCLK) and Write Clock (WCLK), for asynchronous operation. The FIFO has three additional control signals Write Enable, Read Enable and FIFO Reset. Three flags show the status of the FIFO: Empty, Full and Start Read. Each FIFO receives the global Power-on Reset and Reset signals. Figure 12 shows the connections to the FIFO.
14
Lattice Semiconductor
Figure 12. ispGDX2 FIFO Signals
10 10
ispGDX2 Family Data Sheet
Data Out (DOUT)
Data In (DIN) Write Clock (WCLK) Write Enable (WE)
SE LE D IS C CT OD NE TI VI NC UE ED S
Read Clock (RCLK) Read Enable (RE) FIFO 10x15 Full (FULL) Empty (EMPTY) Global Reset (RESETb) Start Read (STRDb) Power-on Reset (PORb) FIFO Reset (FIFORSTb)
Read Clock and Read Enable are the same as the Clock and Clock Enable signals of the input registers of the associated MRB. These registers are used to register the FIFO outputs, and in modes that utilize the FIFO are configured to use the same clock and clock enable signals. The Write Clock is selected from one of the GCLK/CE signals or the RECCLK (Recovered Clock) signal from the associated SERDES. The Write Enable is selected from one of the local MRB product term CLK/CE signals. All FIFO operations occur on the rising edge of the clock although clock polarity of these signals can be programmed. The flags from the FIFO, FULL, EMPTY and STRDb (Start Read) are each fed via a MUX in the MRB to an I/O buffer. The STRDb (half full) signal is used in conjunction with SERDES. STRDb is an active low signal, the signal is inactive (high) on FIFO RESET. After the FIFO reset when the FIFO contains data in five memory locations, at the following write clock transition the STRDb becomes active (low). Note, if the Read Clocks arrive before writing the sixth location, it may take longer than five write clocks before the STRDb becomes active. When the FIFO has data in the first six locations, at the next write clock transition the STRDb becomes inactive (high). Again, if the Read Clocks arrive before writing the seventh location, the STRDb may stay active for longer than one write clock period, even if the FIFO contains data in less than five locations. After this event, the STRDb stays inactive until the FIFO is RESET again. STRDb does not become active again even if less than six memory locations are occupied in the FIFO. It is the user's responsibility to monitor the FULL and EMPTY signals to avoid data underflow/overflow and to take appropriate actions. Figure 13 shows how the FIFO is connected between the I/O banks and the GDX Blocks in FIFO mode. For more information on the FIFO, please refer to Lattice technical note number TN1020, sysHSI Usage Guidelines.
15
Lattice Semiconductor
Figure 13. Operation in FIFO Mode2
GRP GDX Block 1 FIFO
ispGDX2 Family Data Sheet
SERDES
Pre-Assigned Pins
SE LE D IS C CT OD NE TI VI NC UE ED S
Input Reg/ Latch Delay
10
10
DOUT
DIN
RCLK RE
RXD Parallel Data
Serial Data In (SIN)
10
Output Reg/ Latch
TXD Parallel Data
Serial Data Out (SOUT)
PT-CLK/CE(0:3)
WE
GCLK/CE(0:3)
Input Reg/ Latch
RECCLK
CAL
WCLK
Input Reg/ Latch
SYDT
Output Reg/ Latch
FULL EMPTY
Output Reg/ Latch
CDRRSTb
FIFORSTb
Notes: 1. For clarity, only a portion of the GDX Block is shown. 2. Some signals share pins. See Logic Signal Connections tables for details.
POR RESETb
16
Lattice Semiconductor
ispGDX2 Family Data Sheet
High Speed Serial Interface Block (sysHSI Block)1
The High Speed Serial Interface (sysHSI) allows high speed serial data transfer over a pair of LVDS I/O. The ispGDX2 devices have multiple sysHSI Blocks. Each sysHSI Block has two SERDES blocks which contain two main sub-blocks, Transmitter (with a serializer) and Receiver (with a deserializer) including Clock/Data Recovery Circuit (CDR). Each SERDES can be used as a full duplex channel. The two SERDES in a given sysHSI Block share a common clock and must operate at the same nominal frequency. Figure 14 shows the sysHSI Block. Device features support two data coding modes: 10B/12B and 8B/10B (for use with other encoding schemes, see Lattice's sysHSI application notes). The encoding and decoding of the 10B/12B standard are performed within the device in dedicated logic. For the 8B/10B standard, the symbol boundaries are aligned internally but the encoding and decoding are performed outside the device. Each SERDES block receives a single high speed serial data input stream (with embedded clock) from an input, and provide a low speed 10-bit wide data stream and a recovered clock to the device. For transmitting, the SERDES converts a 10-bit wide low-speed data stream to a single high-speed data stream with embedded clock for output. Additionally, multiple sysHSI Blocks can be grouped together to form a source synchronous interface of between 18 channels. Figure 15 shows the connections of the SERDES block with the FIFO, sysIO block and the MRB. Table 6 provides the descriptions of the SERDES. For more information on the SERDES/CDR, refer to Lattice technical note number TN1020, sysHSI Usage Guidelines. Table 6. SERDES Signal Descriptions
Signal I/O I I O CDRRSTb SYDT CAL RXD TXD SIN
SE LE D IS C CT OD NE TI VI NC UE ED S
Description Resets the CDR circuit of sysHSI block Symbol alignment detect for sysHSI block Initiates source synchronous calibration sequence Parallel data out for sysHSI block Internal Parallel data in for sysHSI block Internal Internal I I O REFCLK SOUT Reference clock received from the clock tree Serial data input for sysHSI block (LVDS input) Clock input for source synchronous group Serial data output for sysHSI block (LVDS output) Clock output for source synchronous group SS_CLKIN RECCLK SS_CLKOUT CSLOCK O Internal Internal Recovered clock from encoded data by CDR of sysHSI block Lock output of the PLL associated with sysHSI block
1. "E-Series" does not support sysHSI.
17
Lattice Semiconductor
Figure 14. sysHSI Block with SERDES and FIFO
sysHSI Block
ispGDX2 Family Data Sheet
Core Logic
SERDES SOUT Serializer TXD 10
SE LE D IS C CT OD NE TI VI NC UE ED S
RXD 10 SIN De-serializer including CDR RECCLK
FIFO
GDX Block
CSLOCK
SS_CLKOUT
CSLOCK
CSPLL
SS_CLKIN
CAL
GRP
Shared Source Synchronous pins drive multiple sysHSI blocks
SERDES
SOUT
Serializer
TXD
10
RXD
10
SIN
De-serializer including CDR
RECCLK
FIFO
GDX Block
REFCLK (0:3)
Reference clocks from CLK (0:3)
Note: Some pins are shared. See Logic Signal Connections table for details
18
Lattice Semiconductor
Figure 15. Operation in SERDES Only Mode1, 2
GRP GDX Block FIFO
ispGDX2 Family Data Sheet
SERDES
Pre-Assigned Pins
SE LE D IS C CT OD NE TI VI NC UE ED S
Input Reg/ Latch Delay
10
DOUT RCLK RE
DIN
RXD Parallel Data
Serial Data In (SIN)
10
Output Reg/ Latch
TXD Parallel Data
Serial Data Out (SOUT)
PT-CLK/CE(0:3)
WE
GCLK/CE(0:3)
Input Reg/ Latch
RECCLK
CAL
WCLK
Input Reg/ Latch
SYDT
Output Reg/ Latch
FULL EMPTY
Output Reg/ Latch
CDRRSTb
FIFORSTb
Notes: 1. Some pins shared. See Logic Signal Connections table for details. 2. For SERDES only mode programmable bit holds FIFO in reset. Input registers used for DOUT, and RECCLK configured as latches and held in pass through.
POR RESETb
19
Lattice Semiconductor
Figure 16. Operation in SERDES with FIFO Mode
GRP GDX Block FIFO
ispGDX2 Family Data Sheet
SERDES
Pre-Assigned Pins
SE LE D IS C CT OD NE TI VI NC UE ED S
Input Reg/ Latch Delay
10
DOUT RCLK RE
DIN
RXD Parallel Data
Serial Data In (SIN)
10
Output Reg/ Latch
TXD Parallel Data
Serial Data Out (SOUT)
PT-CLK/CE(0:3)
WE
GCLK/CE(0:3)
Input Reg/ Latch
RECCLK
CAL
WCLK
Input Reg/ Latch
SYDT
Output Reg/ Latch
FULL EMPTY
Output Reg/ Latch
CDRRSTb
FIFORSTb
POR RESETb
20
Lattice Semiconductor
ispGDX2 Family Data Sheet
IEEE 1149.1-Compliant Boundary Scan Testability
All ispGDX2 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked into a board-level serial scan path for more board-level testing. The test access port has its own supply voltage that can operate with LVCMOS3.3, 2.5 and 1.8 standards.
SE LE D IS C CT OD NE TI VI NC UE ED S
sysIO Quick Configuration
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os' physical nature should be minimal so that board test time is minimized. The ispGDX2 family of devices allows this by offering the user the ability to quickly configure the physical nature of the sysIO cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVMTM System programming software can either perform the quick configuration through the PC parallel port, or can generate the ATE or test vectors necessary for a third-party test system.
IEEE 1532-Compliant In-System Programming
In-system programming of devices provides a number of significant benefits including rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispGDX2 devices provide In-System Programming (ISP) capability through their Boundary Scan Test Access Port. This capability has been implemented in a manner that ensures that the port remains compliant to the IEEE 1532 standard. By using IEEE 1532 as the communication interface through which ISP is achieved, designers get the benefit of a standard, well defined interface. The ispGDX2 devices can be programmed across the commercial temperature and voltage range. The PC-based Lattice software facilitates in-system programming of ispGDX2 devices. The software takes the JEDEC file output produced by the design implementation software, along with information about the scan chain, and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispGDX2 devices during the testing of a circuit board.
Security Scheme
A programmable security scheme is provided on the ispGDX2 devices as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this scheme prevents readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. The security scheme also prevents programming and verification. The entire device must be erased in order to reset the security scheme.
Hot Socketing
The ispGDX2 devices are well suited for those applications that require hot socketing capability. Hot socketing a device requires that the device, when powered down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of the powered-down device be minimal on active signals.
21
Lattice Semiconductor
ispGDX2 Family Data Sheet
Absolute Maximum Ratings 1, 2, 3
ispGDX2C (1.8V) ispGDX2B/V (2.5/3.3V) Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V PLL Supply Voltage VCCP . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V Output Supply Voltage VCCO . . . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . . . . . . . . -0.5 to 4.5V Input or I/O Tristate Voltage Applied 4, 5 . . . . . . . . . -0.5 to 5.5V . . . . . . . . . . . . . . . . -0.5 to 5.5V JTAG Supply Voltage (VCCJ) . . . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . . . . . . . . -0.5 to 4.5V
SE LE D IS C CT OD NE TI VI NC UE ED S
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . -65 to 150C . . . . . . . . . . . . . . . -65 to 150C Junction Temp. (TJ) with Power Applied . . . . . . . . -55 to 150C . . . . . . . . . . . . . . . -55 to 150C
1. Stress above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied (while programming, following the programming specifications). 2. Compliance with the Lattice Thermal Management document is required. 3. All voltages referenced to GND. 4. Overshoot and undershoot of -2V to (VIH (MAX)+2) volts is permitted for a duration of <20ns. 5. A maximum of 64 I/Os per device with VIN > 3.6V is allowed.
Recommended Operating Conditions
Symbol Parameter Supply Voltage for 1.8V Devices1 Supply Voltage for 2.5V Devices Supply Voltage for 3.3V Devices
Min. 1.65 2.3 3
Max. 1.95 2.7 3.6
Units V V V V V V V V
VCC
Supply Voltage for PLL and sysHSI Blocks, 1.8V Devices
1
1.65 2.3 3
1.95 2.7 3.6
V
VCCP
Supply Voltage for PLL and sysHSI Blocks, 2.5V Devices Supply Voltage for PLL and sysHSI Blocks, 3.3V Devices
Power Supply Voltage for JTAG Programming 1.8V Operation Power Supply Voltage for JTAG Programming 2.5V Operation Power Supply Voltage for JTAG Programming 3.3V Operation Junction Commercial Operation Junction Industrial Operation
1.65 2.3 3 0
1.95 2.7 3.6 90
VCCJ
TJ (COM)
TJ (IND)
-40
105
C C
1. sysHSI specification is valid for VCC and VCCP = 1.7V to 1.9V.
Erase Reprogram Specifications
Erase/Reprogram Cycle
Parameter
Min
Max --
Units
1,000
Cycles
Note: Valid over commercial temperature range.
Hot Socketing Specifications1, 2, 3
Symbol
4
Parameter
Condition
Min --
Typ
Max
Units A
IDK
1. 2. 3. 4.
Input or Tristated I/O Leakage Current
0 VIN 3.0V
+/-50
+/-800
Insensitive to sequence of VCC and VCCO. However, assumes monotonic rise/fall rates for VCC and VCCO, provided (VIN - VCCO) 3.6V. LVTTL, LVCMOS only. 0 < VCC VCC (MAX), 0 < VCCO VCCO (MAX). IDK is additive to IPU, IPD or IBH. Device defaults to pull-up until fuse circuitry is active.
22
Lattice Semiconductor
ispGDX2 Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol IIL, IIH1 IIH
3
Parameter Input or I/O Low Leakage Input High Leakage Current I/O Active Pull-up Current
Condition 0 VIN (VCCO - 0.2V) (VCCO - 0.2V) < VIN 3.6V 3.6V < VIN 5.5V and 3.0V VCCO 3.6V 0 VIN 0.7 VCCO
Min. -- -- --
Typ. -- -- --
Max. 10 30 3
Units A A mA A A A
SE LE D IS C CT OD NE TI VI NC UE ED S
IPU -30 30 30 -- -- -- -150 150 -- -- IPD I/O Active Pull-down Current VIL (MAX) VIN VIH (MAX) -- IBHLS Bus Hold Low Sustaining Current VIN = VIL (MAX) Bus Hold High Sustaining Current VIN = 0.7 VCCO Bus Hold Low Overdrive Current Bus Hold Trip Points I/O Capacitance2 -- IBHHS -30 -- IBHLO 0 VIN VIH (MAX) -- -- 150 IBHLH VBHT C1 Bus Hold High Overdrive Current 0 VIN VIH (MAX) -150 -- -- -- VCCO * 0.35 -- -- -- -- -- -- -- 8 6 6 VCCO * 0.65 -- -- -- VCCO = 3.3V, 2.5V, 1.8V VCCO = 3.3V, 2.5V, 1.8V VCCO = 3.3V, 2.5V, 1.8V VCC = 1.8V, VIO = 0 to VIH (MAX) VCC = 1.8V, VIO = 0 to VIH (MAX) VCC = 1.8V, VIO = 0 to VIH (MAX) C2 C3 Clock Capacitance2 Global Input Capacitance2
A
A A V pf pf pf
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled. 2. TA = 25C, f = 1.0MHz. 3. 5V tolerant inputs and I/Os should be placed in banks where 3.0V VCCO 3.6V. The JTAG ports are not included for the 5V tolerant interface.
Supply Current
Symbol
Over Recommended Operating Conditions (ispGDX2-256)4
Power Pins Vcc (V) 3.3 2.5 1.8 3.3 2.5 1.8 3.3 2.5 1.8 3.3 2.5 1.8 3.3 2.5 1.8 Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 59.6 58.7 60.0
Description
Max. -- -- --
Units mA mA mA mA mA mA
Core Logic Power Supply Current
ICC1,2
VCC
118.7 118.7 117.5 14.7 14.7 17.4 35 35 25
-- -- --
GPLL/sysHSI Logic Power Supply Current
-- -- --
mA mA mA mA mA mA
ICCP2
GPLL/sysHSI CSPLL Power Supply Current
VCCP
-- -- --
ICCO3
Bank Power Supply Current
VCCO
1.5 1.0 800
-- -- --
mA mA A
ICCJ
1. 2. 3. 4.
JTAG Programming Current
VCCJ
64-input switching frequency at 20 MHz, with one GRP fanout. One GPLL with fVCO = 400 MHz and one sysHSI Block (two receivers and two transmitters) at 622 MHz data rate. All 8-bank reference circuit currents, all I/Os in tristate, inputs held at valid logic levels, and bus maintenance circuits disabled. TA = 25C
23
Lattice Semiconductor
ispGDX2 Family Data Sheet
sysIO Recommended Operating Conditions
VCCO (V)1 Standard LVCMOS 3.3 LVCMOS 2.5 LVCMOS 1.82 LVTTL Min. 3.0 2.3 1.65 3.0 3.0 Typ. 3.3 2.5 1.8 3.3 Max. 3.6 2.7 1.95 3.6 3.6 Min. VREF (V) Typ. Max. -
SE LE D IS C CT OD NE TI VI NC UE ED S
PCI 3.3 3.3 PCI-X 3.0 3.3 3.6 AGP-1X 3.15 2.3 3.0 3.3 3.45 2.7 3.6 SSTL 2 2.5 1.15 1.3 1.25 1.5 1.5 1.35 1.7 SSTL 3 3.3 CTT 3.3 3.0 3.3 3.6 1.35 1.65 0.9 CTT 2.5 2.3 2.5 2.7 1.35 1.5 1.65 HSTL Class I 1.4 1.5 1.6 0.68 0.75 0.9 0.9 HSTL Class III GTL+ 1.4 1.5 1.5 1.6 1.6 HSTL Class IV 1.4 1.4 3.6 0.882 1.0 1.122 LVPECL 3.0 3.3 3.6 LVDS 2.3 2.3 2.5/3.3 2.5/3.3 3.6 3.6 BLVDS
1. Inputs are independent of VCCO setting. However, VCCO must be set within the valid operating range for one of the supported standards. 2. Software default setting.
24
Lattice Semiconductor
ispGDX2 Family Data Sheet
sysIO Single Ended DC Electrical Characteristics
Over Recommended Operating Conditions
Input/Output Standard LVCMOS 3.3 VIL Min (V) -0.3 Max (V) 0.8 Min (V) 2.0 VIH Max (V) 5.5 VOL Max (V) 0.4 0.2 VOH Min (V) 2.4 VCCO - 0.2 2.4 VCCO - 0.2 VCCO - 0.4 VCCO - 0.2 VCCO -0.4 0.9 VCCO 0.9 VCCO 0.9 VCCO IOL2 (mA) IOH2 (mA)
20, 16, 12, -20, -16, -12, 8, 5.33, 4 -8, -5.33, -4 0.1 4 0.1 -0.1 -4 -0.1
SE LE D IS C CT OD NE TI VI NC UE ED S
LVTTL -0.3 0.8 2.0 5.5 0.4 0.2 0.4 LVCMOS 2.5 -0.3 0.7 1.7 3.6 16, 12, 8, 5.33, 4 0.1 8 0.2 LVCMOS 1.8
1, 3
-16, -12, -8, -5.33, -4 -0.1 -8
-0.3 -0.3 -0.3 -0.3 -0.3
0.68
1.07
3.6
0.4
VCCO - 0.4 VCCO - 0.2
LVCMOS 1.83 PCI 3.34
0.68 1.08 1.26 1.08
1.07 1.5 1.5 1.5
3.6 3.6 3.6 3.6
0.4
12, 5.33, 4 -12, -5.33, -4 0.1 -0.1 1.5 1.5 1.5 8 16 -0.5 -0.5 -0.5 -8 -16
0.2
0.1 VCCO 0.1 VCCO 0.1 VCCO 0.7 0.5
PCI -X5
AGP-1X4
SSTL3 class I
-0.3
VREF - 0.2 VREF - 0.2
VREF + 0.2 VREF + 0.2
3.6 3.6
VCCO - 1.1 VCCO - 0.9
SSTL3 class II
-0.3
SSTL2 class I CTT 3.3
-0.3
VREF - 0.18 VREF + 0.18 VREF - 0.18 VREF + 0.18 VREF - 0.2 VREF + 0.2 VREF + 0.2 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.2 VREF - 0.3 VREF - 0.1 VREF - 0.2 VREF - 0.3 VREF - 0.2
3.6 3.6
0.54 0.35
VCCO - 0.62 VCCO - 0.43 VREF + 0.4 VREF + 0.4 VCCO - 0.4 VCCO - 0.4 VCCO - 0.4 n/a
7.6 8 8
-7.6 -8 -8
SSTL2 class II
-0.3
15.2
-15.2
-0.3
3.6 3.6 3.6 3.6 3.6 3.6
VREF - 0.4 VREF - 0.4 0.4 0.4 0.4 0.6
CTT 2.5
-0.3 -0.3
HSTL class I
8
-8 -8 -8
HSTL class III GTL+
-0.3
24 48
HSTL class IV
-0.3 -0.3
36
n/a
1. Software default setting. 2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank. 3. For 1.8V devices (ispGDX2C) these specifications are VIL = 0.35 VCC and VIH = 0.65VCC 4. For 1.8V power supply devices these specifications are VIL = 0.3 * VCC * 3.3/1.8, VIH = 0.5 * VCC * 3.3/1.8 5. For 1.8V power supply devices these specifications are VIL = 0.35 * VCC * 3.3/1.8 and VIH = 0.5 * VCC * 3.3/1.8
25
Lattice Semiconductor
ispGDX2 Family Data Sheet
sysIO Differential DC Electrical Characteristics
Over Recommended Operating Conditions
Parameter Symbol LVDS VINP VINM VTHD IIN Input Voltage Differential Input Threshold Input Current -- 0.2V VCM 1.8V Power On 0 +/-100 -- -- -- -- -- 2.4 -- +/-10 1.60 -- 450 50 V mV A V V Parameter Description Test Conditions Min. Typ. Max. Units
Rs
Zo
26
RT=100
RD
SE LE D IS C CT OD NE TI VI NC UE ED S
VOH VOL Output High Voltage for VOP or VOM Output Low Voltage for VOP or VOM Output Voltage Differential Output Voltage Offset RT = 100 RT = 100 1.38 350 -- 0.9 -- 1.03 VOD VOS (VOP - VOM), RT = 100 250 VOD Change in VOD Between High and Low -- Change in VOS Between H and L Output Short Circuit Current (VOP - VOM)/2, RT = 100 1.125 -- 1.25 -- 1.375 50 VOS IOSD -- VOD = 0V. Driver Outputs Shorted. RT = 27 RT = 27 -- -- 24 Bus LVDS1 VOH VOL Output High Voltage for VOP or VOM Output Low Voltage for VOP or VOM Output Voltage Differential Output Voltage Offset Change in VOD Between H and L Change in VOS Between H and L Output Short Circuit Current -- 1.4 1.80 -- 460 27 1.5 27 0.95 240 -- 1.1 -- 1.1 -- VOD VOS |VOP - VOM|, RT = 27 300 1.3 -- VOD |VOP - VOM| /2, RT = 27 VOS IOSD VOD = 0. Driver Outputs Shorted. -- 36 65
1. VOP and VOM are the two outputs of the LVDS output buffer.
1
mV mV V mV
mA
V
V
mV mV V
mV
mA
LVPECL VCCO
DC Parameter
Parameter Description
Min. 1.49 0.86 1.7 0.96 0.3
Max. 2.72 2.11 1.27
Min. 1.49 1.92 1.06 0.3
Max. 2.72 2.28 1.43
Min. 1.49 2.03 1.25 0.3
Max. 2.72 2.41 1.57
Units V V V V V V
Output Supply Voltage Input Voltage High Input Voltage Low
3.0
3.3
3.6
VIH VIL
2.125
0.86
2.125
0.86
2.125
VOH VOL
Output Voltage High Output Voltage Low
VDIFF
2
Differential Input voltage
1. These values are valid at the output of the source termination pack as shown above with 100-ohm differential load only (see Figure 17). The VOH levels are 200mV below the standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges. 2. Valid for 0.2V VCM 1.8V.
Figure 17. LVPECL Driver with Three Resistor Pack
ispGDX2 LVPECL Buffer
1/4 of Bourns P/N CAT 16-PC4F12
A Rs
Zo
to LVPECL differential receiver
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC External Switching Characteristics
Over Recommended Operating Conditions
-3 Parameter Output Paths tPD Data From Input Pin to Output Pin Global Clock to Output -- 3.0 -- 3.2 -- 3.5 -- 5.0 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz MHz tPD_SEL tCO tOPS Data From Global Select Pin to Output Pin Set-up Time Before Global Clock Hold Time After Global Clock -- 2.8 -- -- -- 3.0 -- -- -- 3.3 -- -- -- 4.7 -- -- Description Min. Max. Min. -32 Max. Min. -35 Max. Min. -5 Max. Units
SE LE D IS C CT OD NE TI VI NC UE ED S
-- 2.9 -- 3.1 -- 3.2 -- 5.4 2.0 0.0 2.0 0.0 2.0 0.0 3.0 0.0 tOPH tOPCES PT Clock Enable Setup Time Before Global Clock PT Clock Enable Hold Time After Global Clock 3.0 0.0 -- -- -- 3.0 0.0 -- -- -- 4.1 0.0 -- -- -- 6.9 0.0 -- -- -- tOPCEH tOPRSTO External Reset Pin to Output Delay Set-up Time Before Global Clock Set-up Time Before Global Clock (Zero Hold Time) Hold Time After Global Clock Hold Time After Global Clock (Zero Hold Time) 5.3 -- 6.0 -- 6.0 -- 10.0 -- Input Paths tIPS 0.5 0.5 0.5 0.9 tIPSZ tIPH 2.0 -- 2.0 -- 2.0 -- 3.0 -- 1.0 -- 1.0 -- 1.0 -- 1.7 -- tIPHZ 0.0 3.1 0.0 -- -- -- -- 0.0 3.1 0.0 -- -- -- -- 0.0 3.1 0.0 -- -- -- -- 0.0 5.1 0.0 -- -- -- -- tIPCES PT Clock Enable Setup Time Before Global Clock tIPCEH PT Clock Enable Hold Time After Global Clock External Reset Pin to Output Delay tIPRSTO 5.6 6.5 7.5 12.5 9.1 -- Output Enable Paths tOECO tOES Global Clock to Output Enabled Pin -- 4.2 -- -- 4.5 -- -- 5.5 -- -- Output Enable Register Set-up Time Before Global Clock Hold Time After Global Clock 1.6 1.6 2.0 3.4 tOEH 0.0 -- 0.0 -- 0.0 -- 0.0 -- tOECES PT Clock Enable Setup Time Before Global Clock 3.5 0.0 -- -- -- 3.5 0.0 -- -- -- 4.1 0.0 -- -- -- 6.9 0.0 -- -- -- tOECEH PT Clock Enable Hold Time After Global Clock Test OE Input to Output Enable/Disable Input to Output Enable/Disable Width of Reset Pulse Clock Width Clock Width Clock Frequency with External Feedback 1/(tOPS + tCO) Clock Frequency Maximum Toggle (No PLL) tGOE/DIS Global OE Input to Output Enable/Disable 3.5 3.8 4.5 7.5 tTOE/DIS tEN/DIS tRW -- 5.2 -- 5.5 -- 6.2 -- 10.3 -- 5.2 -- -- 5.5 -- -- 6.2 -- -- 10.3 -- Clock and Reset Paths tCW 2.5 2.5 2.5 4.1 1.3 1.5 -- -- -- -- 204 360 1.5 1.6 -- -- -- -- 196 330 1.6 1.6 -- -- -- -- 192 300 2.7 2.7 -- -- -- -- 119 180 tGW fMAX (Ext) fMAX (Tog, No PLL)
27
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC External Switching Characteristics
Over Recommended Operating Conditions
-3 Parameter Description Min. -- Max. 360 Min. -- fMAX Clock Frequency Maximum Toggle (Tog, PLL) (With PLL) -32 Max. 330 Min. -- -35 Max. 300 Min. -- -5 Max. Units 180 MHz
SE LE D IS C CT OD NE TI VI NC UE ED S
28
Timing v.2.2
Lattice Semiconductor
ispGDX2 Family Data Sheet
Timing Model
The task of determining the timing through the ispGDX2 family is relatively simple. The timing model provided in Figure 18 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. Figure 18. ispGDX2 Timing Model Diagram (I/O Cell)
TOE/ GOE
SE LE D IS C CT OD NE TI VI NC UE ED S
t TOE_IN t GOE_IN t IOI TOE path GOE path from GRP t PTOE to sysHSI (REFCLK) to FIFO (WE)
GCLK/ GCLKEN
tCLK_IN tCLKEN_IN t IOI
t GCLK
t PTCLKEN t PTCLK
t OEBYPASS
tPLL_SEC_DELAY
tPLL_DELAY
from GRP
OE Reg.
D
Q
to sysHSI/FIFO (Global Reset)
to FIFO (WCLK)
GSR
t SR_IN t IOI
CE
S/R
from sysHSI (SOUT)
t HSISOUT
from GRP
t PTSR
from sysHSI/FIFO (Flags) from sysHSI (SSCLKOUT)
t HSIFIFOFLAG
GSEL
t SEL_IN t IOI
t HSISSCLKOUT
Output Delays t BUF t EN t DIS t IOO
from GRP
tPTSEL
from Adjacent Cells (Output)
t OPBYPASS
OUT
t OPAC
Output Reg.
from GRP
t MUXPD t MUXSEL
D
Q
CE
to sysHSI (TXD)
from Adjacent Cells (Input) from FIFO (DOUT)
t IPAC
S/R
t FIFODATAOUT
to Adjacent Cells (Output)
from sysHSI (RECCLK, SYDT) from PLL (PLL Output)
t HSIOUT
Input Reg.
S/R CE
t PLLOUT
IN
t IN t IOI
D
Q
t ROUTEGRP
to GRP
t INDIO
tIPBYPASS
to sysHSI/FIFO
(SIN, Control, DIN, I/O Reset, SSCLKIN)
to Adjacent Cells (Input)
Italicized parameters are optional. Model Version 1.6.7
to FIFO (REN)
to FIFO (RCLK)
29
Lattice Semiconductor
ispGDX2 Family Data Sheet
Figure 19. ispGDX2 Timing Model Diagram (with sysHSI and FIFO Receive Mode)
to I/O Cell (RECCLK)
SE LE D IS C CT OD NE TI VI NC UE ED S
FIFO
from I/O Cell (SIN) tHSISIN Serial Data In Data Out (RXD) tFIFODATAIN Data In Recovered Clock tFIFOWCLK Write CLK HSI Controls Data Out to I/O Cell (DOUT) HSI Flags from I/O Cell (Control) tHSICTRLCAL CAL CSLOCK to I/O Cell (Output Path Flag) SYDT to I/O Cell (SYDT and Output Path Flags) FIFO Flags FULL, EMPTY from I/O Cell (SSCLKIN) tHSISSCLKIN Source Synchronous Clock to I/O Cell (Output Path Flags) from I/O Cell (RCLK) from I/O Cell (RE) tFIFORCLK Read Clock from I/O Cell (REFCLK) tHSIREFCLK Reference Clock RESET tFIFOREN Read Enable RESET from I/O Cell (Global RESET) from I/O Cell (I/O RESET) tHSIFIFORST
sysHSI (RXD)
Figure 20. ispGDX2 Timing Model Diagram (with sysHSI Transmit Mode)
sysHSI (TXD)
from I/O Cell (TXD)
tHSITXDATA
Data In
Serial Data Out
to I/O Cell (SOUT)
from I/O Cell (REFCLK)
tHSIREFCLK
Reference Clock
Source Synchronous Clock
to I/O Cell (SSCLKOUT)
30
Lattice Semiconductor
Figure 21. ispGDX2 Timing Model Diagram (in FIFO Only Mode)
from I/O Cell (DIN) from I/O Cell (WCLK) from I/O Cell (WE)
ispGDX2 Family Data Sheet
tFIFODATAIN
Data In
FIFO
Data Out to I/O Cell (DOUT)
tFIFOWCLK
Write Clock Write Enable
SE LE D IS C CT OD NE TI VI NC UE ED S
tFIFOWEN FIFO Flags FULL, EMPTY to I/O Cell (Output Path Flags) from I/O Cell (RCLK) from I/O Cell (RE) tFIFORCLK Read Clock tFIFOREN Read Enable RESET from I/O Cell (Global RESET) from I/O Cell (I/O RESET) tHSIFIFORST
31
Lattice Semiconductor
ispGDX2 Family Data Sheet
Sample External Timing Calculations
The following equations illustrate the task of determining the timing through the ispGDX2 family. These are only a sample of equations to calculate the timing through the ispGDX2. Figure 18 shows the specific delay paths and the Internal Timing Parameters table provides the parameter values. Note that the internal timing parameters are given for reference only and are not tested. The external timing parameters are tested and guaranteed for every device. Data from global select pin to output pin: tPD_SEL = tSEL_IN + tMUXSEL + tOPBYPASS + tBUF Global clock to output: tCO = tCLK_IN + tGCLK + tOPCOi + tBUF
SE LE D IS C CT OD NE TI VI NC UE ED S
Input register or latch set-up time before global clock: tIPS = tIN + tIPS - (tCLK + tGCLK) Input register or latch hold time after global clock: tIPH = (tCLK_IN + tGCLK) + tIPHi - tIN Data from product term select to output pin: tPD_PTSEL = tIN + tIPBYPASS + tROUTEGRP + tPTSEL + tMUXSEL + tOPBYPASS + tBUF Product term clock to output: tCO_PT = tIN + tIPBYPASS + tROUTEGRP + tPTCLK + tOPCOi + tBUF Input register or latch set-up time before product term clock: tIPS_PT = tIN + tIPSi_PT - (tIN + tIPBYPASS + tROUTEGRP + tPTCLK) Input register or latch hold time after product term clock: tIPH_PT = (tIN + tIPBYPASS + tROUTEGRP + tPTCLK) + tIPHi - tIN Global OE input to output enable/disable: tGOE/DIS = tGOE_IN + tOEBYPASS + tEN External reset pin to output delay: tOPRSTO = tSR_IN + tOPASROi + tBUF 32
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1
Over Recommended Operating Conditions
-3 Parameter Input/Output Delays tBUF Output Buffer Delay -- -- -- -- 0.80 1.00 1.80 1.50 -- -- -- -- 0.80 1.00 1.80 1.80 -- -- -- -- 0.80 1.00 2.50 2.50 -- -- -- -- 1.14 1.67 4.17 4.17 ns ns ns ns ns ns ns ns ns ns tCLK_IN tDIS tEN tIN Global Clock Input Delay Output Disable Delay Output Enable Delay Input Pin Delay Description Min. Max. -32 Min. Max. -35 Min. Max. Min. -5 Max. Units
SE LE D IS C CT OD NE TI VI NC UE ED S
tCLKEN_IN Global Clock Enable Input Delay -- 1.80 -- 1.80 -- 1.80 -- 3.00 tGOE_IN tSEL_IN tSR_IN Global Output Enable Path Delay Global MUX Select Input Delay Global Set/Reset Path Delay Test Output Enable Path Delay -- -- -- -- 2.00 1.60 2.00 3.70 -- -- -- -- 2.00 1.60 2.70 3.70 -- -- -- -- 2.00 1.60 2.70 3.70 -- -- -- -- 3.33 2.29 4.50 6.17 -- 0.40 -- 0.40 -- 0.40 -- 0.57 tTOE_IN Shift Register and MUX Delays tIPAC Input Path Adjacent I/O Cell Delay (Shift Register) -- -- 0.80 1.30 -- -- 0.80 1.30 -- -- 0.80 1.30 -- -- 1.33 2.17 tOPAC Output Path Adjacent I/O Cell Delay (Shift Register) MUX Data Path Delay MUX Select Path Delay tMUXPD -- -- 0.90 0.40 -- -- 0.90 0.40 -- -- 0.90 0.40 -- -- 1.29 0.57 tMUXSEL AND Arrays and Routing Delays tFIFODATAOUT tGCLK tHSIFIFOFLAG tHSIOUT Clock Tree Delay FIFO Output to I/O Block Delay -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- 0.40 -- 0.40 -- 0.40 -- 0.67 HSI/FIFO Flag to I/O Block Delay HSI Output to I/O Cell Block Delay tHSISSCLKOUT tPLL_DELAY tPTCLK tPTOE tPTCLKEN tPTSEL tPTSR HSI Source Synchronous Clock to I/O Cell Block Delay PLL Delay Increment Clock AND Array Delay OE AND Array Delay -- 0.00 -- 0.00 -- 0.00 -- 0.00 -- -- -- -- -- -- 0.33 2.20 2.40 1.70 1.40 0.90 -- -- -- -- -- -- 0.33 2.20 2.40 1.70 1.40 0.90 -- -- -- -- -- -- 0.33 2.20 2.40 1.70 2.70 0.90 -- -- -- -- -- -- 0.33 3.67 4.00 2.83 4.50 1.29 Clock Enable AND Array Delay Select AND Array Delay -- 2.10 -- 2.10 -- 2.10 -- 3.50 Set/Reset AND Array Delay Global Routing Pool Delay tROUTEGRP tOPASROi tOPASRRi tOPCEHi tOPCESi tOPCESi_PT tOPCOi tOPHi Register/Latch Delays, Output Paths Asynchronous Set/Reset to Output Register/Latch Bypass Delay -- -- 2.50 2.50 -- -- -- 2.50 2.50 -- -- -- 2.50 2.50 -- -- -- 4.17 4.17 -- Asynchronous Set/Reset Recovery Register Clock Enable Hold Time tOPBYPASS -- 0.00 -- 0.20 -- 0.50 -- 0.71 1.30 1.30 1.30 2.17 Register Clock Enable Setup Time (Global Clock Enable) Register Clock Enable Setup Time (Product Term Clock Enable) Register Clock to Output Delay Register Hold Time 1.10 1.00 -- 0.80 -- -- 0.70 -- 1.10 1.00 -- 0.80 -- -- 0.90 -- 1.10 2.10 -- 0.80 -- -- 1.00 -- 1.83 3.50 -- 1.33 -- -- 1.67 --
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
33
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1 (Continued)
Over Recommended Operating Conditions
-3 Parameter tOPLGOi tOPLHi Description Latch Gate to Output Delay Latch Hold Time Latch Propagation Delay (Transparent Mode) Latch Setup Time (Global Gate) Min. -- 0.80 -- Max. 1.00 -- -- 0.80 -- -32 Min. Max. 1.00 -- -- 0.80 -- -35 Min. Max. 1.00 -- Min. -- 1.33 -- -5 Max. Units 1.67 -- ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
SE LE D IS C CT OD NE TI VI NC UE ED S
tOPLPDi tOPLSi 0.30 -- 0.30 -- 0.30 -- 0.50 -- 1.20 1.20 1.20 2.00 tOPLSi_PT tOPSi tOPSi_PT Latch Setup Time (Product Term Gate) Register Setup Time (Global Clock) 1.00 -- 1.00 -- 1.00 -- 1.67 -- 1.20 -- -- 1.20 -- -- 1.20 -- -- 2.00 -- -- Register Setup Time (Product Term Clock) Asynchronous Set/Reset Pulse Width Asynchronous Set/Reset to Output Register/Latch Bypass Delay 1.00 -- 1.00 -- 1.00 -- 1.67 -- tOPSRPWi tIPASROi tIPASRRi tIPCEHi tIPCESi 2.50 2.50 2.50 4.17 2.83 4.17 -- Register/Latch Delays, Input Paths -- -- 1.00 2.50 -- -- -- 1.00 2.50 -- -- -- 1.70 2.50 -- -- -- Asynchronous Set/Reset Recovery Register Clock Enable Hold Time tIPBYPASS -- 0.00 -- 0.00 -- 0.00 -- 0.00 1.30 1.30 1.30 2.17 Register Clock Enable Setup Time (Global Clock Enable) Register Clock Enable Setup Time (Product Term Clock Enable) Register Clock to Output Delay Register Hold Time Latch Hold Time Latch Gate to Output Delay 1.10 1.10 -- -- -- -- 1.10 1.10 -- -- -- -- 1.10 1.10 -- -- -- -- 1.83 1.83 -- -- -- -- tIPCESi_PT tIPCOi tIPHi 0.80 -- -- 1.00 1.00 -- -- 1.00 1.00 -- -- 1.00 1.67 -- -- 1.67 0.00 0.00 -- 0.00 0.00 -- 0.00 0.00 -- 0.00 0.00 -- tIPLGOi tIPLHi tIPLPDi tIPLSi Latch Propagation Delay (Transparent Mode) Latch Setup Time (Global Term) 0.30 -- 0.30 -- 0.30 -- 0.50 -- 1.50 1.50 1.50 2.50 tIPLSi_PT tIPSi tIPSi_PT Latch Setup Time (Product Term Gate) Register Setup Time (Global Clock) 1.50 -- 1.50 -- 1.50 -- 2.50 -- 1.50 -- -- 1.50 -- -- 1.50 -- -- 2.50 -- -- Register Setup Time (Product Term Clock) Asynchronous Set/Reset Pulse Width Asynchronous Set/Reset to Output Register/Latch Bypass Delay 1.50 -- 1.50 -- 1.50 -- 2.50 -- tIPSRPWi 2.50 2.50 2.50 4.17 4.17 4.17 -- OE Paths tOEASROi tOEASRRi tOECEHi tOECESi -- -- 2.50 2.50 -- -- -- 2.50 2.50 -- -- -- 2.50 2.50 -- -- -- Asynchronous Set/Reset Recovery Register Clock Enable Hold Time tOEBYPASS -- 0.00 -- 0.00 -- 0.00 -- 0.00 1.30 1.30 0.80 1.33 Register Clock Enable Setup Time (Global Clock Enable) Register Clock Enable Setup Time (Product Term Clock Enable) Register Hold Time Latch Gate to Output Delay Latch Hold Time Latch Propagation Delay (Transparent Mode) 1.20 1.50 -- 0.40 -- 0.40 -- -- -- 1.20 1.50 -- 0.40 -- 0.40 -- -- -- 1.20 2.10 -- 0.40 -- 0.40 -- -- -- 2.00 3.50 -- 0.67 -- 0.67 -- -- -- tOECESi_PT tOECOi tOEHi tOELGOi tOELHi tOELPDi Register Clock to Output Delay 1.30 -- 1.60 -- 0.30 1.30 -- 1.60 -- 0.30 1.60 -- 1.60 -- 0.30 2.67 -- 2.67 -- 0.50
34
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1 (Continued)
Over Recommended Operating Conditions
-3 Parameter tOELSi tOELSi_PT tOESi tOESi_PT Description Latch Setup Time (Global Gate) Latch Setup Time (Product Term Gate) Register Setup Time (Global Clock) Min. 1.40 1.00 1.00 -- Max. -- -- -- -32 Min. 1.40 1.00 1.00 -- Max. -- -- -- -35 Min. 1.40 1.00 1.40 -- Max. -- -- -- Min. 2.33 1.67 2.33 -- -5 Max. Units -- -- -- ns ns ns ns ns
SE LE D IS C CT OD NE TI VI NC UE ED S
Register Setup Time (Product Term Clock) Asynchronous Set/Reset Pulse Width 1.00 -- 1.00 -- 1.00 -- 1.67 -- tOESRPWi 2.50 2.50 2.50 4.17
Timing v.2.2
1. Internal parameters are not tested and are for reference only. Refer to the timing model in this data sheet for details. 2. tPLL_DELAY is the unit of increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to t RANGE (as given in the sysCLOCK PLL Timing section) in either direction in steps of size tPLL_DELAY.
35
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC Timing Adjusters
-3 Parameter Optional Adders tINDIO tPLL_SEC_DELAY Input Delay Secondary PLL Output Delay -- -- 1.50 1.30 -- -- 1.50 1.30 -- -- 1.50 1.30 -- -- 2.50 1.30 ns ns Description Min. Max. -32 Min. Max. -35 Min. Max. Min. -5 Max. Units
SE LE D IS C CT OD NE TI VI NC UE ED S
tIOO Output Adjusters Slow Slew Using Slow Slew (LVTTL and LVCMOS Outputs Only) Using 3.3V TTL Drive -- 0.90 -- 0.90 -- 0.90 -- 0.90 LVTTL_out -- 1.20 -- 1.20 -- 1.20 -- 1.20 LVCMOS_18_4mA_out Using 1.8V CMOS Standard, 4mA Drive Using 1.8V CMOS Standard, 5.33mA Drive Using 1.8V CMOS Standard, 8mA Drive Using 1.8V CMOS Standard, 12mA Drive Using 2.5V CMOS Standard, 4mA Drive Using 2.5V CMOS Standard, 5.33mA Drive Using 2.5V CMOS Standard, 8mA Drive Using 2.5V CMOS Standard, 12mA Drive Using 2.5V CMOS Standard, 16mA Drive Using 3.3V CMOS Standard, 4mA Drive Using 3.3V CMOS Standard, 5.33mA Drive Using 3.3V CMOS Standard, 8mA Drive Using 3.3V CMOS Standard, 12mA Drive Using 3.3V CMOS Standard, 16mA Drive Using 3.3V CMOS Standard, 20mA Drive Using AGP 1x Standard Using Bus Low Voltage Differential Signaling (BLVDS) Using CTT 2.5v Using CTT 3.3v Using GTL+ Using HSTL 2.5V, Class I Using HSTL 2.5V, Class III Using HSTL 2.5V, Class IV -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0.30 0.30 0.00 0.00 1.20 1.00 0.40 0.40 0.40 1.20 1.20 0.80 0.60 0.60 0.30 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0.30 0.30 0.00 0.00 1.20 1.00 0.40 0.40 0.40 1.20 1.20 0.80 0.60 0.60 0.30 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0.30 0.30 0.00 0.00 1.20 1.00 0.40 0.40 0.40 1.20 1.20 0.80 0.60 0.60 0.30 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0.30 0.30 0.00 0.00 1.20 1.00 0.40 0.40 0.40 1.20 1.20 0.80 0.60 0.60 0.30 LVCMOS_18_5.33mA_out LVCMOS_18_8mA_out LVCMOS_18_12mA_out LVCMOS_25_4mA_out LVCMOS_25_5.33mA_out LVCMOS_25_8mA_out LVCMOS_25_12mA_out LVCMOS_25_16mA_out LVCMOS_33_4mA_out LVCMOS_33_5.33mA_out LVCMOS_33_8mA_out LVCMOS_33_12mA_out LVCMOS_33_16mA_out LVCMOS_33_20mA_out AGP_1X_out BLVDS_out CTT25_out CTT33_out GTL+_out HSTL_I_out HSTL_III_out HSTL_IV_out -- 0.60 -- 0.60 -- 0.60 -- 0.60 -- 1.00 -- 1.00 -- 1.00 -- 1.00 -- -- -- -- -- -- 0.30 0.20 0.50 0.50 0.60 0.60 -- -- -- -- -- -- 0.30 0.20 0.50 0.50 0.60 0.60 -- -- -- -- -- -- 0.30 0.20 0.50 0.50 0.60 0.60 -- -- -- -- -- -- 0.30 0.20 0.50 0.50 0.60 0.60
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
36
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC Timing Adjusters (Continued)
-3 Parameter LVPECL_out LVDS_out PCI_out Description Using LVPECL Differential Signaling Using Low Voltage Differential Signaling (LVDS) Using PCI Standard Using PCI-X Standard Min. -- -- Max. 0.30 0.80 -32 Min. -- -- Max. 0.30 0.80 -35 Min. -- -- Max. 0.30 0.80 Min. -- -- -5 Max. 0.30 0.80 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
SE LE D IS C CT OD NE TI VI NC UE ED S
-- 0.60 -- 0.60 -- 0.60 -- 0.60 PCI_X_out -- -- -- -- -- 0.60 0.30 0.50 0.20 0.40 -- -- -- -- -- 0.60 0.30 0.50 0.20 0.40 -- -- -- -- -- 0.60 0.30 0.50 0.20 0.40 -- -- -- -- -- 0.60 0.30 0.50 0.20 0.40 SSTL2_I_out SSTL3_I_out Using SSTL 2.5V, Class I Using SSTL 3.3V, Class I SSTL2_II_out SSTL3_II_out LVTTL_in Using SSTL 2.5V, Class II Using SSTL 3.3V, Class II Using 3.3V TTL tIOI Input Adjusters LVCMOS_18_in LVCMOS_25_in LVCMOS_33_in AGP_1X_in BLVDS_in CTT25_in CTT33_in GTL+_in -- -- -- -- -- 0.00 0.00 0.00 0.00 1.00 -- -- -- -- -- 0.00 0.00 0.00 0.00 1.00 -- -- -- -- -- 0.00 0.00 0.00 0.00 1.00 -- -- -- -- -- 0.00 0.00 0.00 0.00 1.00 Using 1.8V CMOS Using 2.5V CMOS Using 3.3V CMOS Using AGP 1x Using Bus Low Voltage Differential Signaling (BLVDS) Using CTT 2.5V Using CTT 3.3V Using GTL+ -- 0.50 -- 0.50 -- 0.50 -- 0.50 -- -- -- 1.00 1.00 0.50 -- -- -- 1.00 1.00 0.50 -- -- -- 1.00 1.00 0.50 -- -- -- 1.00 1.00 0.50 HSTL_I_in Using HSTL 2.5V, Class I -- -- -- 0.50 0.60 0.60 -- -- -- 0.50 0.60 0.60 -- -- -- 0.50 0.60 0.60 -- -- -- 0.50 0.60 0.60 HSTL_III_in Using HSTL 2.5V, Class III HSTL_IV_in LVPECL_in LVDS_in PCI_in Using HSTL 2.5V, Class IV Using Differential Signaling (LVPECL) -- -- 0.00 0.50 -- -- 0.00 0.50 -- -- 0.00 0.50 -- -- 0.00 0.50 Using Low Voltage Differential Signaling (LVDS) Using PCI Using PCI-X -- 1.00 -- 1.00 -- 1.00 -- 1.00 PCI_X_in -- 1.00 -- 1.00 -- 1.00 -- 1.00 SSTL2_I_in SSTL3_I_in Using SSTL 2.5V, Class I Using SSTL 3.3V, Class I -- -- -- -- 0.50 0.50 0.60 0.60 -- -- -- -- 0.50 0.50 0.60 0.60 -- -- -- -- 0.50 0.50 0.60 0.60 -- -- -- -- 0.50 0.50 0.60 0.60 SSTL2_II_in SSTL3_II_in Using SSTL 2.5V, Class II Using SSTL 3.3V, Class II
Timing v.2.2
37
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2V/B/C, ispGDX2EV/EB/EC FIFO Internal Timing
-3 Parameter Routing Delays tFIFODATAIN tFIFORCLK tFIFOREN FIFO Input Delay Read Clock Input Delay Write Clock Input Delay -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns tFIFODATAOUT FIFO Output to I/O Core Delay Description Min. Max. -32 Min. Max. -35 Min. Max. -5 Min. Max. Units
SE LE D IS C CT OD NE TI VI NC UE ED S
Read Clock Enable Input Delay Write Clock Enable Input Delay -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 -- -- -- 0.00 0.00 0.00 tFIFOWCLK tFIFOWEN Core Delays tFIFOEMPTY tFIFOCLKSKEW Global Read Clock to Write Clock Skew Read Clock to Empty Flag Delay Write Clock to Full Flag Delay tFIFOFULL -- 2.00 -- 2.00 -- 2.00 -- 3.33 -- -- 1.30 1.30 -- -- 1.80 1.80 -- -- 1.80 1.80 -- -- 3.00 3.00 tFIFORCEH tFIFORCES Read Clock Hold after Read Clock Enable Time Read Clock Setup before Read Clock Enable Time Read Clock to FIFO Out Delay Reset to Output Delay Reset Pulse Width Reset Recovery Time Flow Through Delay -- -- 0.00 1.50 -- -- 0.00 1.50 -- -- 0.00 1.50 -- -- 0.00 2.50 tFIFORCLKO tFIFORSTO tFIFORSTR tFIFOSTRD tFIFOTHRU -- -- 0.50 0.70 -- -- 0.50 0.70 -- -- 0.50 0.70 -- -- 0.83 1.17 tFIFORSTPW -- -- -- 2.00 1.20 0.00 -- -- -- 2.00 1.50 0.00 -- -- -- 2.00 2.00 0.00 -- -- -- 3.33 3.33 0.00 Write Clock to Start Read Flag Delay -- 0.00 -- 0.00 -- 0.00 -- 0.00 tFIFOWCEH tFIFOWCES Write Clock hold after Write Clock Enable Time -- -- 2.00 0.00 -- -- 2.00 0.00 -- -- 2.00 0.00 -- -- 3.33 0.00 Write Clock Setup before Write Clock Enable Time Write Data Hold after Write Clock Time Write Data Setup before Write Clock Time tFIFOWCLKH tFIFOWCLKS -- -- 0.50 1.00 -- -- 0.50 1.00 -- -- 0.70 1.00 -- -- 1.17 1.67
Timing v.2.2
38
Lattice Semiconductor
ispGDX2 Family Data Sheet
sysHSI Block Timing
Figure 22 provides a graphical representation of the SERDES receiver input requirements. It provides guidance on a number of input parameters, including signal amplitude and rise time limits, noise and jitter limits, and P and N input skew tolerance. Figure 22. Receive Data Eye Diagram Template (Differential)
Bit Time
SE LE D IS C CT OD NE TI VI NC UE ED S
V THD 200 mV Differential +/- 100 mV Single Ended jt TH eo SIN jtTH jtTH : Optimum Threshold Crossing Jitter
The data pattern eye opening at the receive end of a link is considered the ultimate measure of received signal quality. Almost all detrimental characteristics of a transmit signal and the interconnection link design result in eye closure. This combined with the eye-opening limitations of the line receiver can provide a good indication of a link's ability to transfer error-free data. Signal jitter is of special interest to system designers. It is often the primary limiting characteristic of long digital links and of systems with high noise level environments. An interesting characteristic of the clock and data recovery (CDR) portion of the ispGDX2 SERDES receiver is its ability to filter incoming signal jitter that is below the clock recovery PLL bandwidth. For signals with high levels of low frequency jitter, the receiver can detect incoming data error free, with eye openings significantly less than that shown in Figure 22.
sysHSI Block AC Specifications
Symbol Description
Operating Frequency Ranges
Mode
Test Condition
Min. 50 33 40
Max. 200 67 80
Units MHz MHz MHz
SS:CAL 8B10B
fCLK
Reference Clock Frequency
10B12B SS:CAL 8B10B LVDS
with eoSIN
400 400 400
8001 8001 8001 8001
Mbps Mbps Mbps Mbps
fSIN2
Serial Input
10B12B
with eoSIN
with eoSIN
fSOUT2
Serial Out
CL = 5 pF, RL = 100 Ohms, fCLK with no jitter
400
1. fSIN (8B/10B and 10B/12B) 800Mbps limit applicable only to the fastest speed grade. Limit is 700Mbps for the lower speed grade. 2. fSIN and fSOUT speeds are supported at VCC and VCCP at 1.7V to 1.9V for ispGDX2C devices.
39
Lattice Semiconductor
LOCKIN Time
Symbol tSCLOCK tCDRLOCK tSYNC tCAL Description CSPLL Lock Time CDRPLL Lock-in Time SyncPat Length CAL Duration Mode All SS 10B12B 8B10B SS SS
ispGDX2 Family Data Sheet
Condition After input is stabilized With SS mode sync pattern With 10B12B sync pattern With 8B10B idle pattern
Min.
Max. 25 1024 1024 960
Units S tRCP1 tRCP tRCP tRCP tRCP tRCP tRCP
SE LE D IS C CT OD NE TI VI NC UE ED S
1200 50 50 1100 tSUSYNC SyncPat Set-up Time to CAL SS SS tHDSYNC SyncPat Hold Time from CAL
1. REFCLK clock period.
REFCLK and SS_CLKIN Timing
Symbol
Description
Mode
Condition
Min.
Max. 100
Units ppm
tDREFCLK
Frequency Deviation Between TX REFCLK and CDRX REFCLK on One Link
8B10B/ 10B12B All
-100
tJPPREFCLK tPWREFCLK
REFCLK, SS_CLKIN Peak-to-Peak Period Jitter
Random Jitter
0.01
UIPP ns ns
REFCLK, SS_CLKIN Pulse Width, (80% to 80% or 20% to 20%).
All All
1
tRFREFCLK
REFCLK, SS_CLKIN Rise/Fall Time (20% to 80% or 80% to 20%)
2
Serializer Timing2
Symbol
Description
Mode All
Condition
Min.
Max. 0.25 130 160
Units UIPP ps ps
tJPPSOUT
SOUT Peak-to-Peak Output Data Jitter SOUT Peak-to-Peak Random Jitter
fCLK with no jitter
tJPP8B10B tRFSOUT
8B10B LVDS
800 Mbps w/K28.7-
SOUT Peak-to-Peak Deterministic Jitter
8B10B
800 Mbps w/K28.5+
SOUT Output Data Rise/Fall Time (20%, 80%) REFCLK to SOUT Delay
700
ps ps ns ns
BLVDS
900
tCOSOUT
SS/8B10B 10B12B SS
2Bt1 + 2 1Bt1 + 2
2Bt1 +10 1Bt1 +10 250
tSKTX
Skew of SOUT with Respect to SS_CLKOUT SS_CLKOUT to bit0 of SOUT
ps ns ns ns
tCKOSOUT
SS All All
2Bt1 - tSKTX 2Bt1 + tSKTX 1.5 1.0
tHSITXDDATAS TXD Data Setup Time
Note 3 Note 3
tHSITXDDATAH TXD Data Hold Time
1. Bt: Bit Time Period. High Speed Serial Bit Time. 2. The SIN and SOUT jitter specifications listed above are under the condition that the clock tree that drives the REFCLK to sysHSI Block is in sysCLOCK PLL BYPASS mode. 3. Internal timing for reference only.
40
Lattice Semiconductor
Deserializer Timing
Symbol fDSIN eoSIN ber Description SIN Frequency Deviation from REFCLK SIN Eye Opening Tolerance Bit Error Rate RXD, SYDT Valid Time Before RECCLK Falling Edge RXD, SYDT Valid Time After RECCLK Falling Edge Mode 8B10B/ 10B12B All All
ispGDX2 Family Data Sheet
Conditions
Min. -100
Max. 100
Units ppm UIPP
Notes 1, 2
0.45 10
-12
SE LE D IS C CT OD NE TI VI NC UE ED S
tHSIOUTVALIDPRE All All All Note 3 Note 3 tRCP/2 - 0.7 tRCP/2 - 0.7 1.5 tRCP + 4.5Bt + 2 tHSIOUTVALIDPOST tDSIN Bit 0 of SIN Delay to RXD Valid at RECCLK Falling edge 1.5 tRCP + 4.5Bt + 10
1. Eye opening based on jitter frequency of 100KHz. 2. Lower frequency operation assumes maximum eye closure of 800ps. 3. Internal timing for reference only.
Bits ns ns ns
Lock-in Timing
CDRX_SS LOCK-IN (DE-SKEW) TIMING
SIN MIN. 1200 SYNCPAT
DATA (SERIAL )
CAL
MIN. 1100 LS CYCLE
tSUSYNC
tHDSYNC
SYDT
RXD(0:7)
SYNCPAT
DATA (PARALLEL)
TRAINING SEQUENCE
SS MODE DATA TRANSFER
CDR_10B12B LOCK-IN TIMING
1024 SYNCPAT
SIN
DATA (SERIAL )
SYDT
RXD(0:9)
SYNCPAT
DATA (PARALLEL)
41
Lattice Semiconductor Lock-in Timing (Continued)
CDR_8B10B LOCK-IN TIMING
SIN SYDT RXD(0:9) Idle Pattern 240 Idle Pattern(960 TRCP)
ispGDX2 Family Data Sheet
DATA (SERIAL )
SE LE D IS C CT OD NE TI VI NC UE ED S
SYDT Timing
SYDT TIMING FOR CDRX_10B12B
RECCLK SYDT RXD(0:9) Data0 Data1 Data2 Data3 Data4 Parallel Data SYNC PATTERN
DATA (PARALLEL)
SYDT TIMING FOR CDRX_8B10B
RECCLK SYDT
RXD(0:9)
K28.5 D21.4 D21.5 D21.5 K28.5 D21.4 D21.5 D21.5
D0
D1
D2
IDLE PATTERN
IDLE PATTERN
Data
42
Lattice Semiconductor Serializer Timing
8B/10B SERIALIZER DELAY TIMING
ispGDX2 Family Data Sheet
TXD
SYMBOL N tCOSOUT
SYMBOL N+1
SE LE D IS C CT OD NE TI VI NC UE ED S
REFCLK SOUT b4 b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 SYMBOL N SYMBOL N-1 SYMBOL N+1 10B/12B SERIALIZER DELAY TIMING TXD SYMBOL N SYMBOL N+1 t COSOUT REFCLK SOUT b4 b5 b6 b7 b8 b9 "0" "1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 "0" "1" SYMBOL N-1 SYMBOL N SS Mode SERIALIZER DELAY TIMING TXD SYMBOL N SYMBOL N+1 REFCLK t COSOUT SS_CLKOUT t CKOSOUT t SKTX SOUT b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 SYMBOL N-1 SYMBOL N SYMBOL N+1
INTERNAL TIMING FOR sysHSI BLOCK t PWREFCLK REFCLK tHSITXDDATAS TXD tHSITXDDATAH
43
Lattice Semiconductor Deserializer Timing
8B/10B DESERIALIZER DELAY TIMING SYMBOL N SIN SYMBOL N+1
ispGDX2 Family Data Sheet
SYMBOL N+2
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5 TDSIN
SE LE D IS C CT OD NE TI VI NC UE ED S
RXD SYMBOL N-1 SYMBOL N 10B/12B DESERIALIZER DELAY TIMING SYMBOL N SYMBOL N+1 SYMBOL N+2 SIN "1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 "0" "1" b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 "0" "1" b0 b1 b2 b3 b4 TTDSIN RECCLK RXD SYMBOL N-2 SYMBOL N-1 SYMBOL N CDRX_SS DESERIALIZER DELAY TIMING SYMBOL N b3 SYMBOL N+1 b2 b3 SYMBOL N+2 b2 b3 SIN b0 b1 b2 b4 b5 b6 b7 b0 b1 b4 b5 b6 b7 b0 b1 b4 TDSIN RECCLK RXD SYMBOL N-2 SYMBOL N-1 SYMBOL N
INTERNAL TIMING FOR sysHSI BLOCK RECCLK
RECCLK
t HSIOUTVALIDPRE
t HSIOUTVALIDPOST
SYDT, RXD
44
Lattice Semiconductor
ispGDX2 Family Data Sheet
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Symbol tPWH tPWL tR, tF tINSTB Parameter Input clock, high time Input clock, low time Input Clock, rise and fall time Input clock stability, cycle to cycle (peak) M Divider input, frequency range N Divider input, frequency range V Divider input, frequency range Output clock, duty cycle M Divider output, frequency range N Divider output, frequency range V Divider output, frequency range 80% to 80% 20% to 20% 20% to 80% Conditions Min 0.5 0.5 -- -- Max -- -- 3.0 +/- 300 320 320 320 400 320 60 320 Units ns ns ns ps
SE LE D IS C CT OD NE TI VI NC UE ED S
fMDIVIN fNDIVIN 10 10 10 10 fMDIVOUT fNDIVOUT fVDIVIN fVDIVOUT 10 100 40 -- tOUTDUTY tJIT(CC) Output clock, cycle to cycle jitter (peak) Clean reference : 10 MHz fMDIVOUT 40 MHz or 100 MHz fVDIVIN 160 MHz
1
MHz MHz MHz MHz MHz MHz % ps
+/- 600
Clean reference1: 40 MHz fMDIVOUT 320 MHz and 160 MHz fVDIVIN 400 MHz Clean reference1: 10 MHz fMDIVOUT 40 MHz or 100 MHz fVDIVIN 160 MHz
--
+/- 150
ps
--
+/- 600
ps
TJIT(PERIOD)
2
Output clock, period jitter (peak)
Clean reference1: 40 MHz fMDIVOUT 320 MHz and 160 MHz fVDIVIN 400 MHz Internal feedback External feedback
--
+/- 150 3.4 25
ps ns ps us ps ns ns
tCLK_OUT_DLY
Input clock to CLK_OUT delay
--
tPHASE
Input clock to external feedback delta Delay increment (Lead/Lag) Minimum reset pulse width
-- --
500
tLOCK
Time to acquire phase lock after input stable Total output delay range (lead/lag)
tPLL_DELAY
Typical = +/- 250ps
+/- 120 +/- 550 1.8 --
tRANGE
+/- 0.84 +/- 3.85
tPLL_RSTW
1. This condition assures that the output phase jitter will remain within specification. Jitter specification is based on optimized M, N and V settings determined by the ispLEVER software. 2. Accumulated jitter measured over 10,000 waveform samples
45
Lattice Semiconductor
ispGDX2 Family Data Sheet
Boundary Scan Timing Specifications
Over Recommended Operating Conditions
Parameter tBTCP tBTCPH tBTCPL tBTS tBTH TCK [BSCAN] clock pulse width TCK [BSCAN] clock pulse width high TCK [BSCAN] clock pulse width low TCK [BSCAN] setup time TCK [BSCAN] hold time Description Min 40 20 20 8 Max -- -- -- -- -- Units ns ns ns ns ns ns ns ns
SE LE D IS C CT OD NE TI VI NC UE ED S
10 -- -- -- 8 tBTRF TCK [BSCAN] rise/fall time 50 -- tBTCO TAP controller falling edge of clock to valid output 10 10 10 -- -- tBTCODIS tBTCOEN tBTCRS tBTCRH TAP controller falling edge of clock to valid disable TAP controller falling edge of clock to valid enable BSCAN test capture register setup time BSCAN test capture register hold time 10 -- -- -- tBUTCO BSCAN test update register, falling edge of clock to valid output 25 tBTUODIS BSCAN test update register, falling edge of clock to valid disable BSCAN test update register, falling edge of clock to valid enable 25 25 tBTUPOEN
mV/ns
ns ns ns ns ns
46
Lattice Semiconductor
ispGDX2 Family Data Sheet
Power Consumption
ICORE
200 150 90 80 70 60 50 40 30 20 10 0
IHSI
100
IPLL
IHSI_D
80
IPLL_D
mA
mA
SE LE D IS C CT OD NE TI VI NC UE ED S
100
mA
60 40 20 0
50 0
IHSI_A
IPLL_A
600
0
50
100
150
200
250
300
350
0
200
400
600
800
1000
1200
0
200
400
MHz
Mbps
MHz
Power Estimation Coefficients - Core and PLL
Device VCC 3.3 2.5 IDC (mA) 10.0 4.0 10.0 KREF 3.25 3.13
KIN
KCORE 0.292 0.292
KPLLD 0.157 0.157
KPLLA 0.024 0.024
0.0139
ispGDX2-256
0.0139
1.8
3.00
0.0213
0.239
0.179
0.024
IDC: KREF: KIN: KCORE: KPLLD: KPLLA:
Blank chip background current Reference voltage circuit current per bank I/O current per input per MHz Core current per MHz with GRP fanout of 1 PLL logic current per MHz per PLL PLL analog portion current per MHz per PLL
Power Estimation Coefficients - sysHSI
Device VCC 3.3 2.5 KRXD 0.027
KRXSTBY 1.3 1.3
KRXA
KTXD
KTXSTBY 2.4 2.4
KTXA
0.0023
0.011
0.0018
ispGDX2-256
0.027
0.0023
0.011
0.0018
1.8
0.019
3.7
0.0040
0.011
1.2
0.0023
KRXD: KRXSTBY: KRXA: KTXD: KTXSTBY: KTXA:
Receiver Logic current per Mbps Receiver Logic standby current Receiver Analog portion current per Mbps Transmitter Logic current per Mbps Transmitter Logic standby current Transmitter Analog portion current per Mbps
47
Lattice Semiconductor
ispGDX2 Family Data Sheet
Power Consumption (Continued)
Power consumption in the ispGDX2 family is the sum of three components: ICC-TOTAL = ICORE + IPLL + IHSI (ICC-TOTAL combines current supplied via VCC pins and VCCP pins) ICORE = IDC + IREF + IIN = Blank chip background current + KREF * Number of Banks with VREF active + (KIN * Number of inputs + KCORE) * Average Input Switching Frequency (MHz) IPLL = IPLL_D + IPLL_A = [KPLLD * FVCO * Number of PLLs used] + [KPLLA * FVCO * Number of PLLs used] = [(KPLLD + KPLLA) * FVCO] * Number of PLLs used = IRX + ITX IHSI = [(KRXD + KRXA) * FRX + IRXSTBY] * Number of Receiver Channels + [(KTXD + KTXA) * FTX + ITXSTBY] * Number of Transmitter Channels
SE LE D IS C CT OD NE TI VI NC UE ED S
Where: FVCO: sysClock PLL VCO Frequency in MHz FRX: sysHSI Receiver Serial Data Rate FTX: sysHSI Transmitter Serial Data Rate IHSI = IHSI_D + IHSI_A = [(KRXD * FRX + IRXSTBY)* Number of Receiver Channels + (KTXD * FTX + ITXSTBY) * Number of Transmitter Channels] +[(KRXA * FRX) * Number of Receiver Channels + (KTXA * FTX) * Number of Transmitter Channels] ICCP = IPLL_A + IHSI_A = [(KPLLA * FVCO) * Number of PLLs used] + [(KRXA * FRX) * Number of Receiver Channels + (KTXA * FTX) * Number of Transmitter Channels] Where: IPLL_A: PLL Analog Portion Current IHSI_A: HSI Analog Portion Current 48
IHSI can also be determined by calculating IHSI_D, the current supplied by the VCC pin, and IHSI_A, the current supplied by the VCCP0 and VCCP1.
The ICCP is supplied through VCCP0 and VCCP1 pins for PLL and sysHSI analog portion. The equation for ICCP can be derived from the equations below.
Note: For further information about the use of these coefficients, refer to Technical Note TN1034, Power Estimation in the ispGDX2 Family.
ICC-TOTAL estimates are based on typical conditions. These values are for estimates only. Since the value of ICCTOTAL is sensitive to operating conditions and the program in the device, the actual current should be verified.
Lattice Semiconductor
ispGDX2 Family Data Sheet
Switching Test Conditions
Figure 23 shows the output test load used for AC testing. Specific values for resistance, capacitance, voltage and other test conditions are shown in Table 7. Figure 23. Output Test Load, LVTTL and LVCMOS Standards (1.8V)
VCCO
SE LE D IS C CT OD NE TI VI NC UE ED S
R1 Device Output Test Point R2 CL* *CL includes Test Fixture and Probe Capacitance.
Table 7. Test Fixture Required Components
Test Condition Default LVCMOS 1.8 I/O (L -> H, H -> L) LVCMOS I/O (L -> H, H -> L)
R1
R2
CL
Timing Ref. VCCO/2
VCCO 1.8V
106 --
106 --
35pF
LVCMOS3.3 = 1.5V
LVCMOS3.3 = 3.0V
35pF
LVCMOS2.5 = VCCO/2 VCCO/2 VCCO/2
LVCMOS2.5 = 2.3V 1.65V 1.65V
LVCMOS1.8 = VCCO/2
LVCMOS1.8 = 1.65V
Default LVCMOS 1.8 I/O (Z -> H) Default LVCMOS 1.8 I/O (Z -> L)
--
106 --
35pF 5pF
106 --
35pF 5pF
Default LVCMOS 1.8 I/O (H -> Z)
106 --
VOH - 0.15
1.65V
Default LVCMOS 1.8 I/O (L -> Z)
106
VOL + 0.15
1.65V
Note: Output test conditions for all other interfaces are determined by the respective standards.
49
Lattice Semiconductor
ispGDX2 Family Data Sheet
Signal Descriptions1
Signal Names General Purpose BKx_IOy GCLK/CE0, GCLK/CE1, GCLK/CE2, GCLK/CE3 SEL0, SEL1, SEL22, SEL32
2
Description Input/Output - General purpose I/O number y in I/O Bank X. Input - Global clock/clock enable inputs. Input - Global MUX select inputs.
SE LE D IS C CT OD NE TI VI NC UE ED S
GOE0, GOE1, GOE2 , GOE3 RESETb NC GND VCC
2
Input - Global output enable inputs. No connect.
Input - Global RESET signal (active low). GND - Ground.
VCC - The power supply pins for core logic.
VCCJ
VCC - The power supply for the JTAG logic.
VCCOx VREFx TMS TCK TDI
VCC - The power supply pins for I/O Bank X.
Input - Defines the reference voltage for I/O Bank X.
Testing and Programming
Input - Test Mode Select input, used to control the 1149.1 state machine.
Input - Test Clock Input pin, used to clock the 1149.1 state machine.
Input - Test Data In pin, used to load data into device using 1149.1 state machine. Output - Test Data Out pin used to shift data out of device using 1149.1.
TDO TOE
Input - Test Output Enable pin. TOE tristates all I/O pins when driven low. Input - Optional feedback input allows external feedback for PLL z. Input - Optional input resets the M divider in PLL z.
PLL Functions PLL_FBKz PLL_RSTz
CLK_OUTz
Output - Optional clock output from PLL z (clock signal occupies the input path of this I/O pad). Output - Optional lock output from PLL z (lock signal occupies the input path of this I/O pad). GND - Ground for PLLs. VCC - The power supply pins for PLLs. Input - DATA IN Bit w of FIFO y.
PLL_LOCKz
GNDP0, GNDP1 VCCP0, VCCP1 FIFOy_DINw
FIFO Functions FIFOy_DOUTw FIFOy_FULL
Internal Signal - DATA OUT Bit w of FIFO y Input - Reset input for FIFO y (active low). Output - FULL flag for FIFO y.
FIFOy_FIFORSTb FIFOy_EMPTY FIFOy_STRDb
Output - EMPTY flag for FIFO y.
Output - Start read (STRDb) flag for FIFO y.
SERDES Functions
HSImA_SINP, HSImB_SINP
Input - Positive sense serial input for sysHSI BLOCK m channel A, B.
HSImA_SINN, HSImB_SINN
Input - Negative (minus) sense serial input for sysHSI BLOCK m channel A, B. Output - Positive sense serial output for sysHSI BLOCK m channel A, B. Output - Negative (minus) sense serial output for sysHSI BLOCK m channel A, B. Output - Symbol alignment detect for sysHSI BLOCK m channel A, B. Internal Signal - Recovered clock for sysHSI BLOCK m channel A, B. Input - Resets the CDR circuit of sysHSI BLOCK m channel A, B.
HSImA_SOUTP, HSImB_SOUTP HSImA_SOUTN, HSImB_SOUTN HSImA_SYDT, HSImB_ SYDT HSImA_RECCLK, HSImB_RECCLK HSImA_CDRRSTb, HSImB_CDRRSTb HSIm_CSLOCK
Output - LOCK output of the PLL associated with channel m.
50
Lattice Semiconductor
ispGDX2 Family Data Sheet
Signal Descriptions1 (Continued)
Signal Names HSImA_TXDw, HSImB_ TXDw HSImA_RXDw, HSImB_ RXDw Source Synchronous Functions SS_SCLKIN0P, SS_SCLKIN1P Input - Positive sense clock input for Source Synchronous group A, B. SS_SCLKIN0N, SS_SCLKIN1N Input - Negative (minus) sense clock input for Source Synchronous group A, B. Description Internal Signal - Parallel data in bit w for sysHSI BLOCK m channel A, B. Internal Signal - Parallel data out bit w for sysHSI BLOCK m channel A, B.
SE LE D IS C CT OD NE TI VI NC UE ED S
SS_CLKOUT0N, SS_CLKOUT1P CAL Output - Positive sense clock output for Source Synchronous group A, B. SS_CLKOUT0N, SS_CLKOUT1N Input - Initiates source synchronous calibration sequence.
1. m, w, x, y and z are variables. 2. Not on ispGDX2-64
Output - Negative (minus) sense clock output for Source Synchronous group A, B.
ispGDX2-64 Power Supply and NC Connections1
Signal VCC A1, K10 J7 F10 B7 B4 E1 F1 K4 K1
ispGDX2-64 (100-Ball fpBGA)2
VCCO0 VCCO1 VCCO2 VCCO3 VCCO4 VCCO5 VCCO6 VCCO7 VCCJ VCCP0 GND
E10
G6 G5
GNDP0
A10, B9, C8, E6, E5, F6, F5, H3, J2
1. All grounds must be electrically connected at the board level. 2. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
51
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2 Power Supply and NC Connections1
Signal VCC ispGDX2-128 (208-Ball fpBGA)3 B15, C14, R15, B2, C3, P3, R2, ispGDX2-256 (484-Ball fpBGA)3 AA3, AA20, B3, B20, C2, C11, C12, C21, H9, H10, H11, H12, H13, H14, J8, J15, K8, K15, L8, L15, L20, M3, M8, M15, M20, N8, N15, P8, P15, R9, R10, R11, R12, R13, R14, Y2, Y11, Y12, Y21 AA14, AB20, Y17 P21, U20, Y22 C22, E20, J21 A3, B9, C6 C1, F3, J2 P2, U3, Y1
SE LE D IS C CT OD NE TI VI NC UE ED S
VCCO1 VCCO2 VCCO3 VCCO4 VCCO5 VCCO6 VCCO7 VCCJ L13, M16 E16, F13 A5, D6 E1, F4 L4, M1 N6, T5 P14 J1 J16 H1 A12, D11 A20, B14, C17 AA9, AB3, Y6 L3 VCCP0 VCCP1 K1 J1 N22 K22 GNDP0 GNDP1 GND H16 NC2 A11, B16
VCCO0
N11, T12
A16, D13, H15, J15, N13, T16, A1, B9, B8, D4, H2, J2, A2, A11, A12, A21, A1, A22, AA1, AA2, AA11, AA12, N4, R8, R9, T1, G7, G8, G9, G10, H7, H8, H9, H10, J7, AA21, AA22, AB1, AB2, AB11, AB12, AB21, AB22, B1, J8, J9, J10, K7, K8, K9, K10 B2, B11, B12, B21, B22, C3, C20, D4, D19, E5, E18, F6, F17, G7, G16, H8, H15, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L1, L2, L7, L9, L10, L11, L12, L13, L14,L16, L21, L22, M1, M2, M7, M9, M10, M11, M12,M13, M14, M16, M21, M22, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, R8, R15, T7, T16, U6, U17, V5, V18, W4, W19,Y3, Y20 D8, D11, E6, E7, E8, E9, E12, E13, E14, E15, E16, F7, F16, G5, G6, G18, G19, H19, K4, K19, L19, M4, M19, N4, P4, P19, R4, R18, T4, T5, T17, T18, U5, U7, U16, V7, V8, V9, V10, V11, V12, V15, V16, V17, W14, Y18
1. All grounds must be electrically connected at the board level. 2. NC pins should not be connected to any active signals, VCC or GND. 3. Pin orientation A1 starts from the upper left corner of the top side view with alphabetical order ascending vertically and numerical order ascending horizontally.
52
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-64 Logic Signal Connections
Signal Name GOE0 BK0_IO0/PLL_LOCK0 BK0_IO1 GND BK0_IO2 BK0_IO3 GND sysIO LVDS Bank Pair/Polarity 0 0 0 0 0 0N 0P 1N 1P GDX Block 0A 0A 0A MRB 0 1 2 3 SERDES Mode I/O Pin1 HSI0A_CDRRSTb HSI0A_SINN HSI0A_SINP SERDES Mode I/O Cell2 HSI0A_RECCLK FIFO Mode I/O Cell/Pin3 FIFO0_FULL FIFO0_FIFORSTb 100 fpBGA H6 J6 K6 GND G7 H7 K7 K8 J8 K9
SE LE D IS C CT OD NE TI VI NC UE ED S
0A 0 BK0_IO4/PLL_RST0 BK0_IO5 BK0_IO6 BK0_IO7 GND TCK 0 2N 2P 3P 0A 4 HSI0A_RXD0/TXD0 FIFO0_DIN0/DOUT0 0 0 0 0A 0A 5 6 7 HSI0A_RXD1/TXD1 HSI0A_RXD2/TXD2 FIFO0_DIN1/DOUT1 FIFO0_DIN2/DOUT2 3N 0A Note 4 HSI0A_RXD3/TXD3 FIFO0_DIN3/DOUT3 0 RESETb BK1_IO0/PLL_FBK0 BK1_IO1 BK1_IO2 GND 1 4P 0A 8 HSI0A_SYDT 5
GND
GND J10 J9 H9 H8
HSI0A_RXD4/TXD4
FIFO0_DIN4/DOUT4
H10
1
4N 5P -
0A
9
HSI0A_RXD5/TXD5
FIFO0_DIN5/DOUT5
1
0A -
10 -
HSI0A_RXD6/TXD6 -
FIFO0_DIN6/DOUT6 -
BK1_IO3/VREF(0,1)
1
5N 6P
0A
11
FIFO0_STRDb6 HSI0A_SOUTP -
HSI0A_RXD7/TXD7
FIFO0_DIN7/DOUT7
G10 G9 G8 F9 F8 F7 E7 E8 E9 D8 D9
1
GND
BK1_IO4 BK1_IO5 GND BK1_IO6
1 1 1 -
0A
12 13 14 -
HSI0A_RXD8/TXD8 -
FIFO0_DIN8/DOUT8 -
6N 7P
0A
HSI0A_SOUTN SS_CLKIN1P -
HSI0A_RXD9/TXD9 HSI0A_SYDT 5
FIFO0_DIN9/DOUT9 -
1
GND
0A -
BK1_IO7
1
7N
0A
15
SS_CLKIN1N
FIFO0_ EMPTY -
GCLK/CE2 BK2_IO0
CLK2P 8N 8P -
GCLK/CE3 BK2_IO1
CLK2N
2
0B -
0 -
SS_CLKOUT0N SS_CLKOUT0P HSI0B_SOUTN HSI0B_SOUTP -
-
FIFO1_FULL -
2
0B
1
-
FIFO1_EMPTY -
GND
2
-
GND
BK2_IO2 GND
2
9N 9P -
0B -
2 -
HSI0BA_SYDT5 -
BK2_IO3
2
0B
3
HSI0B_RXD0/TXD0
FIFO1_DIN0 -
2
GND D10 C9
BK2_IO4/VREF (2,3) BK2_IO6 BK2_IO7 BK3_IO0
2
10N 10P
0B
4
HSI0B_RXD1/TXD1
FIFO1_DIN1/DOUT1
BK2_IO5
2
0B
5
-
HSI0B_RXD2/TXD2
FIFO1_DIN2/DOUT2
2 2 3
11N 11P 12P
0B
6 7 8
HSI0_CSLOCK Note 4 -
HSI0B_RXD3/TXD3
FIFO1_DIN3/DOUT3
C10 B10 A9 B8 A8 A7 C7 D7
0B 0B
HSI0B_RXD4/TXD4
FIFO1_DIN4/DOUT4
HSI0B_RXD5/TXD5
FIFO1_DIN5/DOUT5
BK3_IO1
3
12N 13P 14P
0B
9
HSI0B_SYDT5 -
HSI0B_RXD6/TXD6
FIFO1_DIN6/DOUT6
BK3_IO2 BK3_IO3 GND
3 3
0B 0B -
10 11 -
HSI0B_RXD7/TXD7 -
FIFO1_DIN7/DOUT7 FIFO1_DIN8/DOUT8 -
13N
HSI0B_RXD8/TXD8
3 3 3 3 3 3
HSI0B_SINP HSI0B_SINN FIFO1_STRDb6 HSI0B_CDRRSTb
GND
BK3_IO4 BK3_IO5 GND BK3_IO6 BK3_IO7/CLK_OUT0
0B 0B 0B 0B
12 13 14 15
HSI0B_RXD9/TXD9 HSI0B_RECCLK -
FIFO1_DIN9/DOUT9 FIFO1_FIFORSTb
14N 15P 15N
GND B6 C6
53
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-64 Logic Signal Connections (Continued)
Signal Name SEL0 SEL1 BK4_IO0/CLK_OUT2 BK4_IO1 GND sysIO LVDS Bank Pair/Polarity 4 4 4 16N 16P GDX Block 1A7 1A7 MRB 0 1 2 3 4 5 6 7 SERDES Mode I/O Pin1 HSI1A_CDRRSTb FIFO2_STRDb6 HSI1A_SINN HSI1A_SINP SERDES Mode I/O Cell2 FIFO Mode I/O Cell/Pin3 FIFO2_FIFORSTb 100 fpBGA D6 D5 C5 B5 D4 C4 A6 A5 A4 A3 B3 A2 B1 B2 C1 C2 C3 D1 D3 D2 E2 E3 E4 F4 F3 F2 G3 G2 G1 H1 H2 J1 J3 K2 J4 K3 GND G4 H4 GND
SE LE D IS C CT OD NE TI VI NC UE ED S
BK4_IO2 GND 4 17N 17P 1A7 1A7
7
HSI1A_RECCLK -
-
BK4_IO3
4
HSI1A_RXD9/TXD9
FIFO2_DIN9/DOUT9 -
4
GND
BK4_IO4
4
18N 18P
1A
HSI1A_RXD8/TXD8
FIFO2_DIN8/DOUT8
BK4_IO5 BK4_IO6 TMS TDI
4
1A7 1A7 -
CAL -
HSI1A_RXD7/TXD7
FIFO2_DIN7/DOUT7
4 -
19N 19P -
1A7
HSI1A_SYDT5 -
HSI1A_RXD6/TXD6 -
FIFO2_DIN6/DOUT6 -
BK4_IO7
4
HSI1A_RXD5/TXD5
FIFO2_DIN5/DOUT5
GND
-
-
-
-
-
-
-
GND
TDO TOE
-
-
-
-
-
-
-
-
-
-
-
BK5_IO0
5
20P
1A7 1A7
7
8 9
Note 4 -
HSI1A_RXD4/TXD4
FIFO2_DIN4/DOUT4
BK5_IO1 BK5_IO2 GND
5 5
20N 21P -
1A7
HSI1_CSLOCK
HSI1A_RXD3/TXD3
FIFO2_DIN3/DOUT3
10 11 12 13 14 15 -
HSI1A_RXD2/TXD2 HSI1A_RXD1/TXD1 -
FIFO2_DIN2/DOUT2 FIFO2_DIN1/DOUT1 -
BK5_IO3/Vref(4,5)
5
21N 22P -
1A -
5
-
GND
BK5_IO4 GND
5
1A7 -
HSI1A_SOUTP -
HSI1A_RXD0/TXD0 HSI1A_SYDT5 -
FIFO2_DIN0/DOUT0 -
BK5_IO5
5
22N 23P
1A7 1A7 1A7 -
HSI1A_SOUTN SS_CLKIN1P -
5
GND
BK5_IO6
5 -
FIFO2_EMPTY FIFO2_FULL -
BK5_IO7
5
23N
SS_CLKIN1N
GCLK/CE0 GCLK/CE1 BK6_IO0 GND
CLK0P 24N 24P -
-
CLK0N
6
1B -
0 -
SS_CLKOUT1N SS_CLKOUT1P HSI1B_SOUTN HSI1B_SOUTP -
-
FIFO3_EMPTY -
BK6_IO1
6
1B
1
HSI1B_SYDT5 -
6
GND
BK6_IO2 BK6_IO3 GND
6 6
25N 25P -
1B -
2 3 -
HSI1B_RXD9/TXD9 HSI1B_RXD8/TXD8 -
FIFO3_DIN9/DOUT9 FIFO3_DIN8/DOUT8 -
1B
6
GND
BK6_IO4/Vref(Bank6,7) BK6_IO5 BK6_IO6
6
26N 26P
1B
4
FIFO3_STRDb6 -
HSI1B_RXD7/TXD7
FIFO3_DIN7/DOUT7
6 6
1B
5 6
HSI1B_RXD6/TXD6 HSI1B_RXD5/TXD5
FIFO3_DIN6/DOUT6 FIFO3_DIN5/DOUT5
27N 27P 28P
1B
BK6_IO7/PLL_FBK2
6
1B
7
HSI1B_SYDT5 Note 4 HSI1B_SINP HSI1B_SINN
HSI1B_RXD4/TXD4
FIFO3_DIN4/DOUT4
BK7_IO0 BK7_IO1
7 7
1B 1B
8 9
HSI1B_RXD3/TXD3
FIFO3_DIN3/DOUT3
28N 29P 29N 30P 30N
HSI1B_RXD2/TXD2 HSI1B_RXD1/TXD1 HSI1B_RXD0/TXD0 HSI1B_RECCLK
FIFO3_DIN2/DOUT2 FIFO3_DIN1/DOUT1 FIFO3_DIN0/DOUT0 -
BK7_IO2 BK7_IO3/PLL_RST2 GND BK7_IO4 BK7_IO5
7 7 7 7 7
1B 1B 1B 1B
10 11 12 13
54
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-64 Logic Signal Connections (Continued)
Signal Name GND BK7_IO6 BK7_IO7/PLL_LOCK2 GOE1 sysIO LVDS Bank Pair/Polarity 7 7 7 7 31P 31N GDX Block 1B 1B MRB 14 15 SERDES Mode I/O Pin1 HSI1B_CDRRSTb SERDES Mode I/O Cell2 FIFO Mode I/O Cell/Pin3 FIFO3_FIFORSTb FIFO3_FULL 100 fpBGA GND K5 J5 H5
SE LE D IS C CT OD NE TI VI NC UE ED S
55
1. The signals in this column route to/from the assigned pins of the associated I/O cell. 2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is available for output only. When transmit data (TXD) is present in the cell, the associated pin is available for input only. 3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the associated pins in FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associated pins through the output MUX and the pins. 4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use and must be left unconnected. 5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, the I/O cell (the whole HSI Block) is not available for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the input register of the cell and frees the I/O cell for transmitter. 6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only. 7. sysHSI Source Synchronous Receive Mode is not available for channel 1A.
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-128 Logic Signal Connections
Signal Name TOE BK0_IO0 BK0_IO1 BK0_IO2 / PLL_LOCK2 / PLL_RST2 BK0_IO3 sysIO LVDS Bank Pair/Polarity 0 0 0 0N 0P 1N 1P GDX Block MRB 0A 0A 0A 0 1 2 SERDES Mode I/O Pin1 SERDES Mode I/O Cell2 FIFO Mode I/O Cell/Pin3 FIFO0A_FULL 208 fpBGA P8 P9 T10 R10 T11 P10 N10 R11 T13 P11 R12 P12 N12 T14 R13 T15 P13 T9 R16 N14 P15 N15 L14 M14 M13 M15 L15 P16 N16 K14 K13 K15 L16 J14 J13 N8 K16 G16 N9 H13 H14 G15
SE LE D IS C CT OD NE TI VI NC UE ED S
0 0A 3 HSI0A_SYDT 5
FIFO0A_ EMPTY -
GND
0
-
GND
BK0_IO4 BK0_IO5 BK0_IO6 BK0_IO7
0 0 0 0 0
2N 2P 3P 3N 4N 4P
0A
4
HSI0A_SINN HSI0A_SINP -
HSI0A_RXD0/TXD0
FIFO0A_DIN0/DOUT0
0A 0A
5 7
HSI0A_RXD1/TXD1
FIFO0A_DIN1/DOUT1
6
HSI0A_RXD2/TXD2
FIFO0A_DIN2/DOUT2
HSI0A_RXD3/TXD3
FIFO0A_DIN3/DOUT3
BK0_IO8
0A
8
Note 4 -
HSI0A_RXD4/TXD4
FIFO0A_DIN4/DOUT4
BK0_IO9 / PLL_FB2 BK0_IO10 BK0_IO11 BK0_IO12
0
0A
9
HSI0A_RXD5/TXD5
FIFO0A_DIN5/DOUT5
0 0 0
5N 5P
0A -
10 -
HSI0A_SOUTN HSI0A_SOUTP -
HSI0A_RXD6/TXD6 -
FIFO0A_DIN6/DOUT6 FIFO0A_DIN7/DOUT7 -
0A
11
HSI0A_RXD7/TXD7
GND
0
GND
6N 6P
0A
12 13
HSI0A_RXD8/TXD8 HSI0A_RECCLK -
FIFO0A_DIN8/DOUT8 FIFO0A_FIFORSTb -
BK0_IO13
0
0A
HSI0A_SYDT5
HSI0A_RXD9/TXD9
FIFO0A_DIN9/DOUT9
BK0_IO14
0 -
7N 7P
0A -
14 -
HSI0A_CDRRSTb FIFO0A_STRDb 6
BK0_IO15 / VREF0
0 -
0A -
15 -
GOE3 TDO GND
-
-
1
-
-
-
-
-
GND
BK1_IO0 / VREF1
1
8P
0B
0
-
HSI0B_SYDT
5
FIFO0B_FULL
BK1_IO1 BK1_IO2 BK1_IO3 BK1_IO4 BK1_IO5 BK1_IO6 BK1_IO7
1
8N 9P
0B
1
-
HSI0B_RXD0/TXD0
FIFO0B_DIN0/DOUT0
1 1 1 1 1 1
0B 0B
2 3 4 6
Note 4 -
HSI0B_RXD1/TXD1
FIFO0B_DIN1/DOUT1
9N
HSI0B_RXD2/TXD2
FIFO0B_DIN2/DOUT2
10P 11P
0B 0B
HSI0B_SOUTP HSI0_CSLOCK HSI0B_SYDT5 -
HSI0B_RXD3/TXD3 HSI0B_RXD5/TXD5
FIFO0B_DIN3/DOUT3 FIFO0B_DIN5/DOUT5
10N 11N 12P
0B 0B
5 7
HSI0B_SOUTN
HSI0B_RXD4/TXD4
FIFO0B_DIN4/DOUT4
HSI0B_RXD6/TXD6
FIFO0B_DIN6/DOUT6
BK1_IO8
1
0B
8
HSI0B_RXD7/TXD7
FIFO0B_DIN7/DOUT7
BK1_IO9
1
12N 13P
0B
9
HSI0B_RXD8/TXD8 HSI0B_RECCLK -
FIFO0B_DIN8/DOUT8 -
BK1_IO10 BK1_IO11
1 1
0B -
10 -
HSI0B_SINP -
HSI0B_RXD9/TXD9
FIFO0B_DIN9/DOUT9 -
13N 14P
0B
11
HSI0B_SINN
GND
1
GND
BK1_IO12
1
0B
12
FIFO0B_STRDb6 SS_CLKIN1P SS_CLKOUT1N SS_CLKOUT1P -
BK1_IO13 BK1_IO14
1 1 -
14N 15P
0B
13
HSI0B_CDRRSTb SS_CLKIN1N
-
FIFO0B_FIFORSTb FIFO0B_ EMPTY FIFO1A_FULL -
0B -
14 0 1 2
-
BK1_IO15 / CLK_OUT2 GCLK/CE2
1
15N
0B
15
-
HSI1A_SYDT5
SEL2 SEL3 GCLK/CE3 BK2_IO0 BK2_IO1 BK2_IO2
2 2 2
16N 16P 17N
1A7 1A7 1A7
56
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-128 Logic Signal Connections (Continued)
Signal Name BK2_IO3 GND BK2_IO4 BK2_IO5 BK2_IO6 BK2_IO7 BK2_IO8 BK2_IO9 sysIO LVDS Bank Pair/Polarity 2 2 2 2 2 2 2 2 18N 18P 19P 20P 19N 20N 17P GDX Block MRB 1A7 1A7 1A7
7
SERDES Mode I/O Pin1 HSI1A_SINN HSI1A_SINP Note 4 CAL HSI1_CSLOCK
SERDES Mode I/O Cell2 HSI1A_RXD0/TXD0 HSI1A_RXD1/TXD1 HSI1A_RXD2/TXD2 HSI1A_RXD3/TXD3
FIFO Mode I/O Cell/Pin3 FIFO1A_DIN0/DOUT0 FIFO1A_DIN1/DOUT1 FIFO1A_DIN2/DOUT2 FIFO1A_DIN3/DOUT3
208 fpBGA F16 GND G13 G14 F14 F15 D16 E15 E13 E14 C16 D15 C15 D14 R14 A9 C13 B14 A15 B13 D12 C12 A14 A13 B12 C11 D10 C10 B11 B10 A10 C9 A7 C8 B7 A6 B6 GND C7 D7 C6 B5
3 4 5 6 7 8 9
SE LE D IS C CT OD NE TI VI NC UE ED S
1A 1A7 1A7
7
HSI1A_RXD4/TXD4
FIFO1A_DIN4/DOUT4
1A7
HSI1A_RXD5/TXD5
FIFO1A_DIN5/DOUT5
HSI1A_RXD6/TXD6
FIFO1A_DIN6/DOUT6
BK2_IO10
2
21N 21P
1A -
10 11 12 13 14 15 -
HSI1A_SOUTN HSI1A_SOUTP HSI1A_SYDT5
HSI1A_RXD7/TXD7 HSI1A_RXD8/TXD8 -
FIFO1A_DIN7/DOUT7 FIFO1A_DIN8/DOUT8 -
BK2_IO11
2
1A7
GND
2
GND
BK2_IO12
2
22N 22P
1A7 1A
7
HSI1A_RXD9/TXD9 HSI1A_RECCLK -
FIFO1A_DIN9/DOUT9 FIFO1A_FIFORSTb FIFO1A_EMPTY -
BK2_IO13
2
HSI1A_CDRRSTb FIFO1A_STRDb6 -
BK2_IO14
2 -
23N 23P
1A7 -
BK2_IO15 / VREF2
2
1A7
TCK
-
GOE2
BK3_IO0 / VREF3 BK3_IO1 BK3_IO2
3
24P
1B
0
-
HSI1B_RXD0/TXD0
FIFO1B_DIN0/DOUT0
3
24N 25P
1B
1
Note 4 -
HSI1B_RXD1/TXD1
FIFO1B_DIN1/DOUT1
3
1B
2 -
HSI1B_RXD2/TXD2 -
FIFO1B_DIN2/DOUT2 -
BK3_IO3
3
25N 26P 27P
1B
3
HSI1B_RXD3/TXD3
FIFO1B_DIN3/DOUT3
GND
3
-
GND
BK3_IO4 BK3_IO5 BK3_IO6
3 3 3
1B 1B
4 6
HSI1B_SOUTP -
HSI1B_RXD4/TXD4
FIFO1B_DIN4/DOUT4
26N
1B
5
HSI1B_SOUTN
HSI1B_RXD5/TXD5
FIFO1B_DIN5/DOUT5
HSI1B_RXD6/TXD6
FIFO1B_DIN6/DOUT6
BK3_IO7 BK3_IO8
3
27N 28P
1B
7
-
HSI1B_RXD7/TXD7
FIFO1B_DIN7/DOUT7 / FIFO1B_STRDb
3
1B
8
-
HSI1B_RXD8/TXD8 HSI1B_RECCLK -
FIFO1B_DIN8/DOUT8 -
BK3_IO9
3
28N 29P
1B
9
HSI1B_SYDT5 HSI1B_SINP HSI1B_SINN -
HSI1B_RXD9/TXD9
FIFO1B_DIN9/DOUT9 -
BK3_IO10 BK3_IO11 GND
3 3
1B -
10 -
29N 30P
1B
11
3
-
GND
BK3_IO12
3
1B
12
HSI1B_SYDT5 -
FIFO1B_FULL -
BK3_IO13 BK3_IO14 BK3_IO15 RESET BK4_IO0
3 3 3 4
30N 31P 31N 32N 32P
1B 1B 2A
13 15 0
HSI1B_CDRRSTb -
FIFO1B_FIFORSTb FIFO1B_ EMPTY FIFO2A_EMPTY -
1B
14
-
-
-
-
-
BK4_IO1 / PLL_LOCK0 / PLL_RST0 BK4_IO2 BK4_IO3 GND BK4_IO4 BK4_IO5 BK4_IO6
4
2A
1
-
-
4 4
33N 33P
2A
2
HSI2A_CDRRSTb HSI2A_SINN HSI2A_SINP HSI2A_SYDT5 -
-
FIFO2A_FIFORSTb FIFO2A_FULL -
2A 2A 2A 2A 2A
3 4 5 6 7
HSI2A_SYDT5 HSI2A_RECCLK HSI2A_RXD9/TXD9 HSI2A_RXD8/TXD8
4 4 4 4 4 34N 34P 35N 35P
FIFO2A_DIN9/DOUT9 FIFO2A_DIN8/DOUT8
BK4_IO7
57
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-128 Logic Signal Connections (Continued)
Signal Name BK4_IO8 BK4_IO9 / PLL_FB0 BK4_IO10 BK4_IO11 GND sysIO LVDS Bank Pair/Polarity 4 4 4 4 4 36N 36P 37N 37P GDX Block MRB 2A 2A 2A 2A 8 9 10 11 SERDES Mode I/O Pin1 FIFO2A_STRDb6 HSI2A_SOUTN HSI2A_SOUTP SERDES Mode I/O Cell2 HSI2A_RXD7/TXD7 HSI2A_RXD6/TXD6 HSI2A_RXD5/TXD5 HSI2A_RXD4/TXD4 FIFO Mode I/O Cell/Pin3 FIFO2A_DIN7/DOUT7 FIFO2A_DIN6/DOUT6 FIFO2A_DIN5/DOUT5 FIFO2A_DIN4/DOUT4 208 fpBGA A4 A3 C5 D5 B4 A2 B3 C4 A8 R1 D3 C2 D2 B1 E3 E4 F3 E2 F2 C1 G3 G4 D1 G2 H4 H3 D9 F1 G1 D8 J4 J3 K1 K2 K4 K3 L1 L2 N1 M2 M4 M3 GND
SE LE D IS C CT OD NE TI VI NC UE ED S
BK4_IO12 4 38N 38P 2A 12 HSI2A_RXD3/TXD3 FIFO2A_DIN3/DOUT3 BK4_IO13 BK4_IO14 GOE1 TMS 4 2A 13 HSI2A_RXD2/TXD2 FIFO2A_DIN2/DOUT2 4 39N 39P 2A 14 Note 4 HSI2A_RXD1/TXD1 FIFO2A_DIN1/DOUT1 BK4_IO15 / VREF4 4 2A 15 HSI2A_RXD0/TXD0 FIFO2A_DIN0/DOUT0 GND 5 BK5_IO0 / VREF5 BK5_IO1 BK5_IO2 BK5_IO3 5 40P 2B 0 FIFO2B_EMPTY 5 40N 41P 2B 1 FIFO2B_STRDb6 HSI2B_SYDT5 5 5 2B 2 HSI2B_CDRRSTb HSI2B_SOUTP HSI2B_RECCLK FIFO2B_FIFORSTb 41N 42P 43P 2B 3 HSI2B_RXD9/TXD9 FIFO2B_DIN9/DOUT9 BK5_IO4 BK5_IO5 BK5_IO6 5 5 5 2B 2B 4 6 HSI2B_RXD8/TXD8 FIFO2B_DIN8/DOUT8 42N 2B 5 HSI2B_SOUTN HSI2B_RXD7/TXD7 FIFO2B_DIN7/DOUT7 HSI2B_RXD6/TXD6 FIFO2B_DIN6/DOUT6 BK5_IO7 5 43N 44P 2B 7 HSI2B_RXD5/TXD5 FIFO2B_DIN5/DOUT5 BK5_IO8 BK5_IO9 5 5 2B 8 Note 4 HSI2B_RXD4/TXD4 FIFO2B_DIN4/DOUT4 44N 45P 2B 2B 9 HSI2_CSLOCK HSI2B_SINP HSI2B_SINN HSI2B_RXD3/TXD3 FIFO2B_DIN3/DOUT3 BK5_IO10 BK5_IO11 5 5 10 HSI2B_RXD2/TXD2 FIFO2B_DIN2/DOUT2 45N 46P 2B 11 HSI2B_RXD1/TXD1 FIFO2B_DIN1/DOUT1 GND 5 BK5_IO12 5 2B 12 HSI2B_RXD0/TXD0 HSI2B_SYDT5 FIFO2B_DIN0/DOUT0 BK5_IO13 5 46N 47P 2B 13 BK5_IO14 5 2B 14 SS_CLKIN0P BK5_IO15 / CLK_OUT0 GCLK/CE0 SEL0 SEL1 5 47N 2B 15 SS_CLKIN0N FIFO2B_FULL CLK0P GCLK/CE1 BK6_IO0 BK6_IO1 CLK0N 48N 48P 6 3A 0 SS_CLKOUT0N SS_CLKOUT0P FIFO3A_EMPTY 6 3A 1 2 BK6_IO2 6 49N 49P 3A HSI3A_CDRRSTb FIFO3A_STRDb6 HSI3A_SINN HSI3A_SINP HSI3A_SYDT5 HSI3_CSLOCK HSI3A_SOUTN HSI3A_SOUTP FIFO3A_FIFORSTb BK6_IO3 6 3A 3 GND 6 BK6_IO4 BK6_IO5 BK6_IO6 BK6_IO7 BK6_IO8 BK6_IO9 BK6_IO10 BK6_IO11 6 6 6 6 6 6 6 6 50N 50P 51N 51P 52N 52P 53N 53P 3A 3A 3A 3A 3A 3A 3A 4 6 7 8 9 10 11 HSI3A_RECCLK 3A 5 HSI3A_RXD9/TXD9 FIFO3A_DIN9/DOUT9 HSI3A_RXD8/TXD8 HSI3A_RXD7/TXD7 HSI3A_RXD6/TXD6 HSI3A_RXD5/TXD5 HSI3A_RXD4/TXD4 HSI3A_RXD3/TXD3 FIFO3A_DIN8/DOUT8 FIFO3A_DIN7/DOUT7 FIFO3A_DIN6/DOUT6 FIFO3A_DIN5/DOUT5 FIFO3A_DIN4/DOUT4 FIFO3A_DIN3/DOUT3
GND
GND
GND
58
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-128 Logic Signal Connections (Continued)
Signal Name GND BK6_IO12 BK6_IO13 BK6_IO14 BK6_IO15 / VREF6 sysIO LVDS Bank Pair/Polarity 6 6 6 6 6 54N 54P 55N 55P GDX Block MRB 3A 3A 3A 3A 12 13 14 15 SERDES Mode I/O Pin1 Note 4 SERDES Mode I/O Cell2 HSI3A_RXD2/TXD2 HSI3A_RXD1/TXD1 HSI3A_RXD0/TXD0 HSI3A_SYDT 5
FIFO Mode I/O Cell/Pin3 FIFO3A_DIN2/DOUT2 FIFO3A_DIN1/DOUT1 FIFO3A_DIN0/DOUT0 FIFO3A_ FULL -
208 fpBGA GND L3 N2 P1 P2 N3 T8 T2 R3 P4 T3 N5 P5 R4 T4 R5 P6 N7 P7 R6 T6 R7 T7
SE LE D IS C CT OD NE TI VI NC UE ED S
TDI GOE0 GND 7 BK7_IO0 / VREF7 7 56P 3B 0 FIFO3B_STRDb6 HSI3B_SYDT5 BK7_IO1 BK7_IO2 7 7 56N 57P 3B 1 HSI3B_CDRRSTb HSI3B_RECCLK FIFO3B_FIFORSTb 3B 2 HSI3B_RXD9/TXD9 FIFO3B_DIN9/DOUT9 BK7_IO3 7 57N 58P 59P 3B 3 HSI3B_RXD8/TXD8 FIFO3B_DIN8/DOUT8 BK7_IO4 BK7_IO5 BK7_IO6 7 7 7 3B 3B 4 6 HSI3B_SOUTP HSI3B_RXD7/TXD7 FIFO3B_DIN7/DOUT7 58N 3B 5 HSI3B_SOUTN Note 4 HSI3B_RXD6/TXD6 FIFO3B_DIN6/DOUT6 HSI3B_RXD5/TXD5 FIFO3B_DIN5/DOUT5 BK7_IO7 BK7_IO8 7 7 59N 60P 3B 7 HSI3B_RXD4/TXD4 FIFO3B_DIN4/DOUT4 3B 8 HSI3B_RXD3/TXD3 FIFO3B_DIN3/DOUT3 BK7_IO9 7 60N 61P 3B 9 HSI3B_RXD2/TXD2 FIFO3B_DIN2/DOUT2 BK7_IO10 BK7_IO11 7 7 3B 10 HSI3B_SINP HSI3B_RXD1/TXD1 FIFO3B_DIN1/DOUT1 61N 62P 3B 11 HSI3B_SINN HSI3B_RXD0/TXD0 HSI3B_SYDT5 FIFO3B_DIN0/DOUT0 FIFO3B_ EMPTY GND 7 BK7_IO12 7 3B 12 BK7_IO13 BK7_IO14 BK7_IO15 7 62N 63P 3B 13 7 7 3B 14 63N 3B 15 FIFO3B_FULL
GND
GND
1. The signals in this column route to/from the assigned pins of the associated I/O cell. 2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is available for output only. When transmit data (TXD) is present in the cell, the associated pin is available for input only. 3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the associated pins in FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associated pins through the output MUX and the pins. 4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use and must be left unconnected. 5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, the I/O cell (the whole HSI Block) is not available for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the input register of the cell and frees the I/O cell for transmitter. 6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only. 7. sysHSI Source Synchronous Receive Mode is not available for channel 1A.
59
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections
Signal Name BK0_IO0 BK0_IO1 BK0_IO2/ PLL_LOCK2 BK0_IO3 GND sysIO Bank 0 0 0 LVDS GDX Pair/Polarity Block MRB 0N 0P 1N 1P 0A 0A 0A 0 1 2 SERDES Mode I/O Pin1 SERDES Mode I/O Cell2 FIFO Mode I/O Cell/Pin3 FIFO0A_FULL 484 fpBGA AB13 AA13 V13
SE LE D IS C CT OD NE TI VI NC UE ED S
0 0A 3 FIFO0A_ EMPTY 0 SYDT_HSI0A5 BK0_IO4 BK0_IO5 BK0_IO6 BK0_IO7 BK0_IO8 0 0 0 0 0 2N 2P 3P 3N 4N 4P 0A 4 HSI0A_SINN HSI0A_SINP HSI0A_RXD0/TXD0 HSI0A_RXD1/TXD1 FIFO0A_DIN0/DOUT0 FIFO0A_DIN1/DOUT1 0A 0A 5 7 6 HSI0A_RXD2/TXD2 FIFO0A_DIN2/DOUT2 HSI0A_RXD3/TXD3 FIFO0A_DIN3/DOUT3 0A 8 Note 4 HSI0A_RXD4/TXD4 FIFO0A_DIN4/DOUT4 BK0_IO9/ PLL_FB2 0 0A 9 HSI0A_RXD5/TXD5 FIFO0A_DIN5/DOUT5 BK0_IO10 BK0_IO11 GND BK0_IO12 0 0 0 5N 5P 0A 10 HSI0A_SOUTN HSI0A_SOUTP HSI0A_RXD6/TXD6 HSI0A_RXD7/TXD7 FIFO0A_DIN6/DOUT6 FIFO0A_DIN7/DOUT7 0A 11 0 6N 6P 0A 12 HSI0A_RXD8/TXD8 HSI0A_RECCLK FIFO0A_DIN8/DOUT8 FIFO0A_FIFORSTb FIFO1A_FULL BK0_IO13 0 0A 13 HSI0A_SYDT5 HSI0A_RXD9/TXD9 FIFO0A_DIN9/DOUT9 BK0_IO14 BK0_IO15 0 0 7N 7P 0A 14 0 HSI0A_CDRRSTb FIFO0A_STRDb6 0A 15 BK0_IO16 0 8N 8P 1A BK0_IO17/ PLL_RST2 BK0_IO18 GND BK0_IO19 0 1A 1 0 9N 9P 1A 2 HSI1A_SYDT 5
V14
GND U12 U13 Y13
W12
W13 Y14 T12 T13
GND
AB14 AB15 Y15 W15
AA15 AA16 Y16
-
0
1A
3
-
HSI1A_RXD0/TXD0
FIFO1A_DIN0/DOUT0 -
W16 U14 U15
0
-
GND
BK0_IO20
0
10N 10P
1A
4
HSI1A_SOUTN HSI1A_SOUTP -
HSI1A_RXD1/TXD1
FIFO1A_DIN1/DOUT1
BK0_IO21/ VREF0 BK0_IO22
0
1A
5
HSI1A_RXD2/TXD2
FIFO1A_DIN2/DOUT2
0
11N 11P 12P 13P
1A
6
HSI1A_RXD3/TXD3 HSI1A_RXD5/TXD5 HSI1A_RXD6/TXD6
FIFO1A_DIN3/DOUT3 FIFO1A_DIN5/DOUT5 FIFO1A_DIN6/DOUT6
AB16 AA17 W17 T14 T15
BK0_IO23 BK0_IO24 BK0_IO25 BK0_IO26 BK0_IO27 BK0_IO28
0 0 0 0 0 0
1A 1A 1A 1A 1A 1A
7 8 9
Note 4 -
HSI1A_RXD4/TXD4
FIFO1A_DIN4/DOUT4
AB17
12N 13N 14N 14P
10 11 12
HSI1A_SINN HSI1A_SINP
HSI1A_RXD7/TXD7
FIFO1A_DIN7/DOUT7
HSI1A_RXD8/TXD8 HSI1A_RECCLK -
FIFO1A_DIN8/DOUT8 FIFO1A_FIFORSTb FIFO1A_EMPTY -
HSI1A_SYDT5
HSI1A_RXD9/TXD9
FIFO1A_DIN9/DOUT9
AA18 AB18 W18 Y19
BK0_IO29 BK0_IO30 GND TDO GND BK1_IO0 BK1_IO1
0 0
1A 1A -
13 14 -
HSI1A_CDRRSTb5 FIFO1A_STRDb6 -
15N 15P -
BK0_IO31 GOE3
0 -
1A -
15 -
0 -
-
GND
-
-
AA19 AB19 GND W21 W20 V22 W22 P16
16P 16N 17P 17N 18P
0B 0B 0B 0B 0B
0 1 2 3 4
Note 4 HSI0B_SINP
HSI0B_SYDT5 HSI0B_RXD0/TXD0 HSI0B_RXD1/TXD1 HSI0B_RXD2/TXD2
FIFO0B_ FULL FIFO0B_DIN0/DOUT0 FIFO0B_DIN1/DOUT1 FIFO0B_DIN2/DOUT2
1 1 1 1 1 1
BK1_IO2 BK1_IO3 BK1_IO4
60
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name BK1_IO5 BK1_IO6 BK1_IO7 BK1_IO8 BK1_IO9 sysIO Bank 1 1 1 1 1 LVDS GDX Pair/Polarity Block MRB 18N 19P 19N 20P 20N 21P 0B 0B 0B 0B 0B 5 6 7 8 9 SERDES Mode I/O Pin1 HSI0B_SINN HSI0_CSLOCK HSI0B_SYDT
5
SERDES Mode I/O Cell2 HSI0B_RXD3/TXD3 HSI0B_RXD4/TXD4 HSI0B_RXD5/TXD5 HSI0B_RXD6/TXD6 HSI0B_RXD7/TXD7
FIFO Mode I/O Cell/Pin3 FIFO0B_DIN3/DOUT3 FIFO0B_DIN4/DOUT4 FIFO0B_DIN5/DOUT5 FIFO0B_DIN6/DOUT6 FIFO0B_DIN7/DOUT7
484 fpBGA P17 U18 V19 V20 V21
SE LE D IS C CT OD NE TI VI NC UE ED S
BK1_IO10/ VREF1 BK1_IO11 GND BK1_IO12 BK1_IO13 1 0B 10 HSI0B_SOUTP HSI0B_RXD8/TXD8 FIFO0B_DIN8/DOUT8 1 1 1 21N 22P 0B 0B 0B 11 12 13 HSI0B_SOUTN HSI0B_RXD9/TXD9 HSI0B_RECCLK FIFO0B_DIN9/DOUT9 FIFO0B_FIFORSTb 1 HSI0B_CDRRSTb FIFO0B_STRDb6 22N 23P BK1_IO14 1 0B 14 0 BK1_IO15 1 23N 24P 0B 15 1 2 3 4 5 6 7 FIFO0B_EMPTY FIFO1B_FULL BK1_IO16 1 1B HSI1B_SYDT
5
R16
R17 U19 T19 U21 R19 T20 T22 T21
GND
U22
BK1_IO17 BK1_IO18 BK1_IO19 GND BK1_IO20 BK1_IO21 BK1_IO22 BK1_IO23
1 1 1 1 1 1 1
24N 25P 25N 26P 27P
1B 1B 1B 1B 1B 1B 1B
-
HSI1B_RXD0/TXD0 HSI1B_RXD2/TXD2 -
FIFO1B_DIN0/DOUT0 FIFO1B_DIN2/DOUT2 -
Note 4 -
HSI1B_RXD1/TXD1
FIFO1B_DIN1/DOUT1
1
GND N16 R20 R21 P20 N19 P18 N17
HSI1B_SOUTP HSI1_CSLOCK HSI1B_SYDT 5
HSI1B_RXD3/TXD3 HSI1B_RXD5/TXD5
FIFO1B_DIN3/DOUT3 FIFO1B_DIN5/DOUT5
26N 27N 28P
HSI1B_SOUTN
HSI1B_RXD4/TXD4
FIFO1B_DIN4/DOUT4
HSI1B_RXD6/TXD6
FIFO1B_DIN6/DOUT6
BK1_IO24
1
1B
8
HSI1B_RXD7/TXD7
FIFO1B_DIN7/DOUT7
BK1_IO25 BK1_IO26 BK1_IO27 GND
1 1 1
28N 29P 29N 30P
1B 1B 1B -
9
HSI1B_RXD8/TXD8 HSI1B_RECCLK -
FIFO1B_DIN8/DOUT8 -
10 11 -
HSI1B_SINP -
HSI1B_RXD9/TXD9
FIFO1B_DIN9/DOUT9 -
HSI1B_SINN
N18 R22 P22
1
GND
BK1_IO28
1
1B
12
FIFO1B_STRDb6 SS_CLKIN1P
-
BK1_IO29
1
30N 31P
1B
13
HSI1B_CDRRSTb
-
FIFO1B_FIFORSTb -
BK1_IO30
1
1B
14
-
M18
BK1_IO31/ CLK_OUT2 GCLK/CE2 SEL2 SEL3
1 -
31N
1B -
15 -
SS_CLKIN1N -
-
FIFO1B_EMPTY -
M17 N20 N21 K21 K20
CLK2P -
-
-
-
-
-
-
-
GCLK/CE3
-
CLK2N 32N 32P
-
-
-
-
-
BK2_IO0/ CLK_OUT3
2
3A7
0 1 2 3 4 5 6 7 8 9
SS_CLKOUT1N SS_CLKOUT1P -
-
FIFO3A_FULL -
K17 K18 L17 L18 J17 J18 J22 J20
BK2_IO1
2
3A7 3A 7
BK2_IO2 GND
2
33N 33P
HSI3A_SYDT -
5
-
BK2_IO3
2
3A7 3A7 3A
7
HSI3A_RXD0/TXD0
FIFO3A_DIN0/DOUT0 -
2 2 2 2 2 2 2 34N 34P 35N 35P 36N 36P
HSI3A_SINN HSI3A_SINP HSI3_CSLOCK Note 4 CAL -
GND
BK2_IO4 BK2_IO5 BK2_IO6 BK2_IO7 BK2_IO8 BK2_IO9
HSI3A_RXD1/TXD1 HSI3A_RXD2/TXD2 HSI3A_RXD3/TXD3 HSI3A_RXD4/TXD4 HSI3A_RXD5/TXD5 HSI3A_RXD6/TXD6
FIFO3A_DIN1/DOUT1 FIFO3A_DIN2/DOUT2 FIFO3A_DIN3/DOUT3 FIFO3A_DIN4/DOUT4 FIFO3A_DIN5/DOUT5 FIFO3A_DIN6/DOUT6
3A7 3A7 3A7 3A7
H22 H21
61
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name BK2_IO10 BK2_IO11 GND BK2_IO12 BK2_IO14 BK2_IO13 sysIO Bank 2 2 2 2 2 2 LVDS GDX Pair/Polarity Block MRB 37N 37P 38N 38P 39N 39P 3A7 3A7 3A7 3A
7
SERDES Mode I/O Pin1 HSI3A_SOUTN HSI3A_SOUTP HSI3A_SYDT5 HSI3A_CDRRSTb FIFO3A_STRDb6 -
SERDES Mode I/O Cell2 HSI3A_RXD7/TXD7 HSI3A_RXD8/TXD8 HSI3A_RXD9/TXD9 HSI3A_RECCLK -
FIFO Mode I/O Cell/Pin3 FIFO3A_DIN7/DOUT7 FIFO3A_DIN8/DOUT8 FIFO3A_DIN9/DOUT9 FIFO3A_FIFORSTb FIFO3A_EMPTY FIFO2A_FULL -
484 fpBGA K16 J16 GND J19 H20
10 11 12 13 14 15 0 1
SE LE D IS C CT OD NE TI VI NC UE ED S
3A7 2A BK2_IO15 2 3A7 2A BK2_IO16 2 40N 40P BK2_IO17 2 HSI2A_SYDT5 BK2_IO18 2 41N 41P 2A 2 HSI2A_RXD0/TXD0 FIFO2A_DIN0/DOUT0 BK2_IO19 GND 2 2A 3 Note 4 HSI2A_RXD1/TXD1 FIFO2A_DIN1/DOUT1 2 BK2_IO20/ PLL_FB3 BK2_IO21/ VREF2 BK2_IO22 BK2_IO23 BK2_IO24 BK2_IO25 2 2 42N 42P 2A 2A 4 5 HSI2A_SOUTN HSI2A_SOUTP HSI2A_RXD2/TXD2 FIFO2A_DIN2/DOUT2 HSI2A_RXD3/TXD3 FIFO2A_DIN3/DOUT3 2 2 2 2 43N 43P 44P 44N 2A 2A 2A 2A 6 7 8 9 HSI2_CSLOCK HSI2A_RXD4/TXD4 FIFO2A_DIN4/DOUT4 HSI2A_RXD5/TXD5 HSI2A_RXD6/TXD6 FIFO2A_DIN5/DOUT5 FIFO2A_DIN6/DOUT6 HSI2A_SYDT5 HSI2A_SINN HSI2A_SINP HSI2A_RXD7/TXD7 FIFO2A_DIN7/DOUT7 BK2_IO26 BK2_IO27 BK2_IO28 BK2_IO29 2 2 2 2 45N 45P 46P 46N 2A 2A 2A 2A 10 11 12 13 HSI2A_RXD8/TXD8 HSI2A_RECCLK FIFO2A_DIN8/DOUT8 FIFO2A_FIFORSTb HSI2A_RXD9/TXD9 FIFO2A_DIN9/DOUT9 HSI2A_CDRRSTb FIFO2A_STRDb6 BK2_IO30 GND TCK 2 47N 47P 2A 14 BK2_IO31 2 2A 15 FIFO2A_EMPTY 2 GOE2 BK3_IO0 3 48P 3B 0 HSI3B_SYDT5 FIFO3B_FULL BK3_IO1 BK3_IO2 BK3_IO3 GND BK3_IO4 BK3_IO5 BK3_IO6 BK3_IO7 3 3 3 3 3 3 3 48N 49P 49N 50P 51P 3B 3B 3B 3B 3B 3B 3B 1 2 3 4 5 6 7 HSI3B_RXD0/TXD0 HSI3B_RXD2/TXD2 FIFO3B_DIN0/DOUT0 FIFO3B_DIN2/DOUT2 Note 4 HSI3B_RXD1/TXD1 FIFO3B_DIN1/DOUT1 3 HSI3B_SINP HSI3B_RXD3/TXD3 FIFO3B_DIN3/DOUT3 50N 51N 52P HSI3B_SINN HSI3B_RXD4/TXD4 FIFO3B_DIN4/DOUT4 HSI3B_RXD5/TXD5 FIFO3B_DIN5/DOUT5 HSI3B_SYDT5 HSI3B_RXD6/TXD6 FIFO3B_DIN6/DOUT6 BK3_IO8 3 3B 8 HSI3B_RXD7/TXD7 FIFO3B_DIN7/DOUT7 BK3_IO9 3 52N 53P 53N 54P 54N 55P 3B 9 HSI3B_RXD8/TXD8 FIFO3B_DIN8/DOUT8 BK3_IO10/ VREF3 BK3_IO11 GND BK3_IO12 BK3_IO13 BK3_IO14/ PLL_RST3 3 3 3 3 3 3 3B 3B 3B 3B 3B 10 11 12 13 14 HSI3B_SOUTP HSI3B_SOUTN FIFO3B_STRDb6 HSI3B_CDRRSTb HSI3B_RXD9/TXD9 HSI3B_RECCLK HSI3B_RECCLK FIFO3B_DIN9/DOUT9 FIFO3B_FIFORSTb -
G21
G20 F22
G22 F20
F21
GND H18
G17 E21 F19 E22
D22
H17 H16 E19 F18
D20
D21 B19
GND C19 E17
D18 A19 A18
GND G15 D17 D16 B18 F15 F14 GND B17 A17 A16 C18 G14
62
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name BK3_IO15 BK3_IO16 BK3_IO17 BK3_IO18 BK3_IO19 GND sysIO Bank 3 3 3 3 3 LVDS GDX Pair/Polarity Block MRB 55N 56P 56N 57P 57N 58P 59P 3B 2B 2B 2B 2B 15 0 1 2 3 SERDES Mode I/O Pin1 Note 4 SERDES Mode I/O Cell2 HSI2B_RXD0/TXD0 HSI2B_RXD1/TXD1 HSI2B_RXD2/TXD2 HSI2B_RXD3/TXD3 FIFO Mode I/O Cell/Pin3 FIFO3B_EMPTY FIFO2B_DIN0/DOUT0 FIFO2B_DIN1/DOUT1 FIFO2B_DIN2/DOUT2 FIFO2B_DIN3/DOUT3 484 fpBGA C16 D15 D14 B16 C15
SE LE D IS C CT OD NE TI VI NC UE ED S
3 BK3_IO20 BK3_IO21 BK3_IO22 3 3 3 2B 2B 2B 4 5 6 HSI2B_SOUTP HSI2B_RXD4/TXD4 FIFO2B_DIN4/DOUT4 58N HSI2B_SOUTN HSI2B_RXD5/TXD5 FIFO2B_DIN5/DOUT5 HSI2B_RXD6/TXD6 FIFO2B_DIN6/DOUT6 BK3_IO23 3 59N 60P 61P 2B 7 FIFO2B_STRDb6 HSI2B_SYDT5 HSI2B_SINP HSI2B_SINN HSI2B_RXD7/TXD7 HSI2B_RXD9/TXD9 HSI2B_RECCLK FIFO2B_DIN7 /DOUT7 FIFO2B_DIN8/DOUT8 FIFO2B_DIN9/DOUT9 BK3_IO24 BK3_IO25 BK3_IO26 BK3_IO27 GND BK3_IO28 3 3 3 3 3 2B 2B 2B 2B 2B 8 9 HSI2B_RXD8/TXD8 60N 61N 62P 10 11 12 3 HSI2B_SYDT5 FIFO2B_FULL BK3_IO29 3 62N 63P 2B 13 HSI2B_CDRRSTb FIFO2B_FIFORSTb BK3_IO30/ PLL_LOCK3 BK3_IO31 RESETb BK4_IO0 3 2B 14 3 63N 64N 64P 2B 4A 15 0 FIFO2B_ EMPTY FIFO4A_EMPTY 4 BK4_IO1/ PLL_LOCK0 BK4_IO2 BK4_IO3 GND 4 4A 1 4 4 65N 65P 4A 4A 2 3 HSI4A_CDRRSTb FIFO4A_FIFORSTb FIFO4A_FULL HSI4A_SYDT5 4 BK4_IO4 BK4_IO5 BK4_IO6 4 4 4 66N 66P 67N 67P 4A 4A 4A 4 5 6 HSI4A_SINN HSI4A_SINP HSI4A_RECCLK HSI4A_SYDT5 HSI4A_RXD9/TXD9 FIFO4A_DIN9/DOUT9 BK4_IO7 4 4A 7 HSI4A_RXD8/TXD8 FIFO4A_DIN8/DOUT8 BK4_IO8 4 68N 68P 4A 8 FIFO4A_STRDb6 HSI4A_RXD7/TXD7 FIFO4A_DIN7 /DOUT7 FIFO4A_DIN6/DOUT6 BK4_IO9/ PLL_FB0 4 4A 9 HSI4A_RXD6/TXD6 BK4_IO10 BK4_IO11 GND BK4_IO12 BK4_IO13 BK4_IO14 BK4_IO15 BK4_IO16 BK4_IO17/ PLL_RST0 BK4_IO18 BK4_IO19 GND BK4_IO20 4 4 4 4 4 4 4 4 4 4 4 4 69N 69P 4A 4A 4A 4A 4A 4A 5A 5A 5A 5A 5A 10 11 12 13 14 15 0 1 2 3 4 HSI4A_SOUTN HSI4A_SOUTP HSI5A_CDRRSTb FIFO5A_STRDb6 HSI5A_SOUTN HSI4A_RXD5/TXD5 FIFO4A_DIN5/DOUT5 HSI4A_RXD4/TXD4 FIFO4A_DIN4/DOUT4 4 70N 70P 71P 71N 72N 72P 73N 73P 74N HSI4A_RXD3/TXD3 HSI4A_RXD2/TXD2 HSI4A_RXD0/TXD0 HSI5A_RECCLK FIFO4A_DIN3/DOUT3 FIFO4A_DIN2/DOUT2 FIFO4A_DIN0/DOUT0 FIFO5A_EMPTY FIFO5A_FIFORSTb Note 4 HSI4A_RXD1/TXD1 FIFO4A_DIN1/DOUT1
GND G13 B15 A15 A14 F13 F12 G12
C14
GND D13 C13 B13
A13 A10 B10
D12
E11 E10 F11
GND F10 C9
C10 D10 D9
G11 G10 A9 C8 B8 A8 B7 C7 A7 B6
GND
GND F9
63
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name BK4_IO21/ VREF4 BK4_IO22 BK4_IO23 BK4_IO24 sysIO Bank 4 4 4 4 LVDS GDX Pair/Polarity Block MRB 74P 75N 75P 76N 76P 5A 5A 5A 5A 5 6 7 8 SERDES Mode I/O Pin1 HSI5A_SOUTP HSI5A_SYDT5 HSI5A_SINN HSI5A_SINP Note 4 SERDES Mode I/O Cell2 HSI5A_RXD9/TXD9 HSI5A_RXD8/TXD8 HSI5A_RXD7/TXD7 HSI5A_RXD6/TXD6 FIFO Mode I/O Cell/Pin3 FIFO5A_DIN9/DOUT9 FIFO5A_DIN8/DOUT8 FIFO5A_DIN7/DOUT7 FIFO5A_DIN6/DOUT6 484 fpBGA F8 D7 D6 A6 A5 G9 G8 C5 B5 D5 C4 B4 A4 D2 D3 F5 E4 J7 J6 D1 E1 F4 E3 H7 H6 E2 F2 G4 H5 F1 G1 G3 G2 K7 K6 H4 H3 H1 H2 J5 K5
SE LE D IS C CT OD NE TI VI NC UE ED S
BK4_IO25 4 5A 9 HSI5A_RXD5/TXD5 FIFO5A_DIN5/DOUT5 BK4_IO26 BK4_IO27 BK4_IO28 BK4_IO29 BK4_IO30 BK4_IO31 4 4 4 4 4 4 77N 77P 78P 79P 78N 79N 5A 5A 5A 5A 5A 5A 10 11 12 13 14 15 HSI5A_RXD4/TXD4 FIFO5A_DIN4/DOUT4 HSI5A_RXD3/TXD3 FIFO5A_DIN3/DOUT3 HSI5A_RXD2/TXD2 HSI5A_RXD0/TXD0 HSI5A_SYDT5 FIFO5A_DIN2/DOUT2 FIFO5A_DIN0/DOUT0 FIFO5A_FULL HSI5A_RXD1/TXD1 FIFO5A_DIN1/DOUT1 GND TMS 4 GOE1 GND 5 BK5_IO0 BK5_IO1 BK5_IO2 5 5 5 80P 81P 4B 4B 4B 0 1 2 FIFO4B_EMPTY 80N FIFO4B_STRDb6 HSI4B_SINP BK5_IO3 BK5_IO4 BK5_IO5 BK5_IO6 5 5 5 5 81N 82P 83P 82N 4B 4B 4B 4B 3 4 5 6 HSI4B_CDRRSTb HSI4B_SINN HSI4B_RECCLK FIFO4B_FIFORSTb HSI4B_RXD9/TXD9 FIFO4B_DIN9/DOUT9 HSI4B_RXD8/TXD8 FIFO4B_DIN8/DOUT8 HSI4B_SYDT5 HSI4B_RXD7/TXD7 FIFO4B_DIN7/DOUT7 BK5_IO7 BK5_IO8 BK5_IO9 5 5 5 83N 84P 84N 85P 4B 4B 4B 7 8 9 HSI4B_RXD6/TXD6 HSI4B_RXD5/TXD5 HSI4_RXD4/TXD4 FIFO4B_DIN6/DOUT6 FIFO4B_DIN5/DOUT5 HSI4_CSLOCK FIFO4B_DIN4/DOUT4 BK5_IO10/ VREF5 BK5_IO11 GND BK5_IO12 BK5_IO13 BK5_IO14 5 4B 10 HSI4B_SOUTP HSI4B_RXD3/TXD3 FIFO4B_DIN3/DOUT3 5 5 5 5 85N 86P 87P 4B 4B 4B 4B 11 12 13 14 0 2 3 HSI4B_SOUTN Note 4 HSI4B_RXD2/TXD2 FIFO4B_DIN2/DOUT2 5 HSI4B_RXD1/TXD1 HSI4B_SYDT5 FIFO4B_DIN1/DOUT1 86N HSI4B_RXD0/TXD0 FIFO4B_DIN0/DOUT0 FIFO4B_FULL BK5_IO15 5 87N 88P 89P 4B 15 1 BK5_IO16 BK5_IO18 BK5_IO19 GND 5 5 5 5B 5B 5B FIFO5B_EMPTY BK5_IO17 5 88N 5B FIFO5B_STRDb6 HSI5B_SYDT5 HSI5B_CDRRSTb HSI5B_RECCLK FIFO5B_FIFORSTb 89N 90P 91P 91N 92P 92N 93P 93N HSI5B_RXD9/TXD9 FIFO5B_DIN9/DOUT9 5 BK5_IO20 BK5_IO21 BK5_IO22 BK5_IO23 BK5_IO24 BK5_IO25 BK5_IO26 BK5_IO27 5 5 5 5 5 5 5 5 5B 5B 5B 5B 5B 5B 5B 5B 4 5 6 7 8 9 10 11 HSI5B_SOUTP Note 4 HSI5_CSLOCK HSI5B_SINP HSI5B_SINN HSI5B_RXD8/TXD8 FIFO5B_DIN8/DOUT8 90N HSI5B_SOUTN HSI5B_RXD7/TXD7 FIFO5B_DIN7/DOUT7 HSI5B_RXD6/TXD6 HSI5B_RXD5/TXD5 HSI5B_RXD4/TXD4 HSI5B_RXD3/TXD3 HSI5B_RXD2/TXD2 HSI5B_RXD1/TXD1 FIFO5B_DIN6/DOUT6 FIFO5B_DIN5/DOUT5 FIFO5B_DIN4/DOUT4 FIFO5B_DIN3/DOUT3 FIFO5B_DIN2/DOUT2 FIFO5B_DIN1/DOUT1
GND
GND
GND
GND
64
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name GND BK5_IO28 BK5_IO29 BK5_IO30 BK5_IO31/ CLK_OUT0 GCLK/CE0 sysIO Bank 5 5 5 5 LVDS GDX Pair/Polarity Block MRB 94P 94N 95P 5B 5B 5B 12 13 14 SERDES Mode I/O Pin1 SS_CLKIN0P SERDES Mode I/O Cell2 HSI5B_RXD0/TXD0 HSI5B_SYDT5 FIFO Mode I/O Cell/Pin3 FIFO5B_DIN0/DOUT0 484 fpBGA GND J4 J3 L6 L5 L4 K3 K2 N1 N6 N5 M5 M6 P6 P5 N3 N2 P3 P1 N7 P7 R3 R2 R1 T1 T2 T3 U1 U2
SE LE D IS C CT OD NE TI VI NC UE ED S
5 95N 5B 15 SS_CLKIN0N FIFO5B_FULL CLK0P SEL0 SEL1 GCLK/CE1 CLK0N 96N 96P BK6_IO0/ CLK_OUT1 BK6_IO1 BK6_IO2 BK6_IO3 6 7A 0 SS_CLKOUT0N SS_CLKOUT0P FIFO7A_EMPTY 6 7A 1 6 6 97N 97P 7A 7A 2 3 HSI7A_CDRRST FIFO7A_FIFORSTb FIFO7A_STRDb6 HSI7A_SINN HSI7A_SINP GND 6 BK6_IO4 6 98N 98P 7A 4 HSI7A_RECCLK BK6_IO5 BK6_IO6 6 6 7A 7A 5 6 HSI7A_RXD9/TXD9 FIFO7A_DIN9/DOUT9 99N 99P HSI7A_RXD8/TXD8 FIFO7A_DIN8/DOUT8 BK6_IO7 6 7A 7A 7 8 HSI7A_RXD7/TXD7 FIFO7A_DIN7/DOUT7 BK6_IO8 6 100N 100P 101P HSI7A_SYDT5 HSI7A_RXD6/TXD6 FIFO7A_DIN6/DOUT6 BK6_IO9 6 6 6 6 7A 7A 9 HSI7_CSLOCK HSI7A_SOUTP HSI7A_RXD5/TXD5 HSI7A_RXD3/TXD3 FIFO7A_DIN5/DOUT5 FIFO7A_DIN3/DOUT3 BK6_IO10 BK6_IO11 GND BK6_IO12 101N 7A 10 HSI7A_SOUTN HSI7A_RXD4/TXD4 FIFO7A_DIN4/DOUT4 11 6 102N 102P 7A 12 HSI7A_RXD2/TXD2 FIFO7A_DIN2/DOUT2 BK6_IO13 BK6_IO14 6 6 7A 13 Note 4 HSI7A_RXD1/TXD1 HSI7A_SYDT5 FIFO7A_DIN1/DOUT1 FIFO7A_ FULL 103N 103P 7A 14 0 2 HSI7A_RXD0/TXD0 FIFO7A_DIN0/DOUT0 FIFO6A_EMPTY BK6_IO15 6 7A 15 1 BK6_IO16 BK6_IO17 BK6_IO18 GND 6 6 6 104N 104P 105N 105P 6A 6A 6A FIFO6A_STRDb6 BK6_IO19 6 6A 3 HSI6A_CDRRSTb HSI6_RECCLK FIFO6A_FIFORSTb 6 BK6_IO20/ PLL_FB1 BK6_IO21/ VREF6 BK6_IO22 BK6_IO23 6 6 106N 106P 6A 4 HSI6A_SOUTN HSI6A_SOUTP HSI6A_SYDT 5
GND
GND
GND R5 T6 U4 V4 V3 V2 R6 R7 W1 V1 W2 W3
HSI6A_RXD9/TXD9
FIFO6A_DIN9/DOUT9
6A
5
HSI6A_RXD8/TXD8
FIFO6A_DIN8/DOUT8
6
107N 107P
6A
6
HSI6A_RXD7/TXD7
FIFO6A_DIN7/DOUT7
6
6A
7
HSI6A_RXD6/TXD6
FIFO6A_DIN6/DOUT6
BK6_IO24
6
108N 108P
6A
8
HSI6A_RXD5/TXD5
FIFO6A_DIN5/DOUT5
BK6_IO25 BK6_IO26 BK6_IO27 BK6_IO28 BK6_IO29 BK6_IO30 BK6_IO31
6 6 6 6 6 6 6
6A 6A 6A 6A 6A 6A 6A
9 10 11 12 13 14 15
HSI6_CSLOCK HSI6A_SINN HSI6A_SINP Note 4 -
HSI6A_RXD4/TXD4 HSI6A_RXD3/TXD3 HSI6A_RXD2/TXD2 HSI6A_RXD1/TXD1 HSI6A_RXD0/TXD0 HSI6A_SYDT5 -
FIFO6A_DIN4/DOUT4 FIFO6A_DIN3/DOUT3 FIFO6A_DIN2/DOUT2 FIFO6A_DIN1/DOUT1 FIFO6A_DIN0/DOUT0 FIFO6A_ FULL
109N 109P 110N 110P 111N 111P
65
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name GND TDI GOE0 GND BK7_IO0 sysIO Bank 6 7 7 LVDS GDX Pair/Polarity Block MRB 112P 7B 0 SERDES Mode I/O Pin1 SERDES Mode I/O Cell2 FIFO Mode I/O Cell/Pin3 FIFO7B_ EMPTY 484 fpBGA GND AA4 Y4 GND AB4 AB5 V6 W5 T8 T9 W6 Y5
SE LE D IS C CT OD NE TI VI NC UE ED S
BK7_IO1 7 112N 113P 7B 1 FIFO7B_STRDb6 HSI7B_SYDT5 HSI7B_SINP HSI7B_SINN BK7_IO2 BK7_IO3 7 7 7B 2 HSI7B_CDRRSTb HSI7B_RECCLK FIFO7B_FIFORSTb 113N 114P 115P 7B 3 HSI7B_RXD9/TXD9 FIFO7B_DIN9/DOUT9 BK7_IO4 BK7_IO5 BK7_IO6 7 7 7 7B 7B 4 6 HSI7B_RXD8/TXD8 FIFO7B_DIN8/DOUT8 114N 7B 5 HSI7B_RXD7/TXD7 FIFO7B_DIN7/DOUT7 HSI7B_RXD6/TXD6 FIFO7B_DIN6/DOUT6 BK7_IO7 BK7_IO8 BK7_IO9 7 7 7 115N 116P 116N 117P 7B 7B 7 9 HSI7B_RXD5/TXD5 HSI7B_RXD3/TXD3 FIFO7B_DIN5/DOUT5 FIFO7B_DIN3/DOUT3 7B 8 Note 4 HSI7B_RXD4/TXD4 FIFO7B_DIN4/DOUT4 BK7_IO10/ VREF7 BK7_IO11 GND BK7_IO12 7 7B 10 HSI7B_SOUTP HSI7B_RXD2/TXD2 FIFO7B_DIN2/DOUT2 7 7 117N 118P 7B 11 HSI7B_SOUTN HSI7B_RXD1/TXD1 FIFO7B_DIN1/DOUT1 7 7B 12 HSI7B_RXD0/TXD0 HSI7B_SYDT5 FIFO7B_DIN0/DOUT0 BK7_IO13 7 118N 119P 7B 13 BK7_IO14/ PLL_RST1 BK7_IO15 BK7_IO16 7 7B 14 7 119N 120P 7B 15 0 1 FIFO7B_FULL 7 6B FIFO6B_STRDb6 HSI6B_SYDT5 BK7_IO17 BK7_IO18 GND 7 7 120N 121P 6B HSI6B_CDRRSTb HSI6B_RECCLK FIFO6B_FIFORSTb 6B 2 HSI6B_RXD9/TXD9 FIFO6B_DIN9/DOUT9 BK7_IO19 7 121N 122P 123P 6B 3 HSI6B_RXD8/TXD8 FIFO6B_DIN8/DOUT8 7 BK7_IO20 BK7_IO21 BK7_IO22 7 7 7 6B 6B 4 6 HSI6B_SOUTP HSI6B_RXD7/TXD7 FIFO6B_DIN7/DOUT7 122N 6B 5 HSI6B_SOUTN HSI6B_RXD6/TXD6 FIFO6B_DIN6/DOUT6 HSI6B_RXD5/TXD5 FIFO6B_DIN5/DOUT5 BK7_IO23 7 123N 124P 6B 7 HSI6B_RXD4/TXD4 FIFO6B_DIN4/DOUT4 BK7_IO24 BK7_IO25 7 7 6B 8 Note 4 HSI6B_RXD3/TXD3 FIFO6B_DIN3/DOUT3 124N 125P 6B 9 HSI6B_RXD2/TXD2 FIFO6B_DIN2/DOUT2 BK7_IO26 BK7_IO27 GND BK7_IO28 7 7 7 6B 10 HSI6B_SINP HSI6B_RXD1/TXD1 FIFO6B_DIN1/DOUT1 125N 126P 6B 11 HSI6B_SINN HSI6B_RXD0/TXD0 HSI6B_SYDT5 FIFO6B_DIN0/DOUT0 FIFO6B_ EMPTY 7 6B 12 BK7_IO29/ PLL_LOCK1 BK7_IO30 BK7_IO31 7 126N 127P 6B 13 7 7 6B 14 127N 6B 15 FIFO6B_FULL
AA5 AA6 U8 U9 W7 W8
GND
AB6
AB7 Y7 W9 Y8
AA7
GND T10 T11
AA8 AB8 Y9
W10 U10
U11
GND W11 Y10
AA10 AB9
66
Lattice Semiconductor
ispGDX2 Family Data Sheet
ispGDX2-256 Logic Signal Connections (Continued)
Signal Name TOE sysIO Bank LVDS GDX Pair/Polarity Block MRB SERDES Mode I/O Pin1 SERDES Mode I/O Cell2 FIFO Mode I/O Cell/Pin3 484 fpBGA AB10
SE LE D IS C CT OD NE TI VI NC UE ED S
67
1. The signals in this column route to/from the assigned pins of the associated I/O cell. 2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is available for output only. When transmit data (TXD) is present in the cell, the associated pin is available for input only. 3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the associated pins in FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associated pins through the output MUX and the pins. 4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use and must be left unconnected. 5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, the I/O cell (the whole HSI Block) is not available for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the input register of the cell and frees the I/O cell for transmitter. 6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only. 7. sysHSI Source Synchronous Receive Mode is not available for channel 3A.
Lattice Semiconductor
ispGDX2 Family Data Sheet
Part Number Description
LX XXX X X - XX FXXX X
Device Family LX Device Number 64 = 64 I/Os 128 = 128 I/Os 256 = 256 I/Os Grade C = Commercial I = Industrial Package F100 = 100-Ball fpBGA FN100 = Lead-Free 100-Ball fpBGA F208 = 208-Ball fpBGA FN208 = Lead-Free 208-Ball fpBGA F484 = 484-Ball fpBGA FN484 = Lead-Free 484-Ball fpBGA Speed 3 = 3.0ns 32 = 3.2ns 35 = 3.5ns 5 = 5.0ns
SE LE D IS C CT OD NE TI VI NC UE ED S
sysHSI Support Blank = Supports sysHSI E = No sysHSI support Power Supply Voltage V = 3.3V B = 2.5V C = 1.8V
Ordering Information
Conventional Packaging
Commercial
3.3
Family
Part Number
I/Os 64 64
Voltage 3.3
tPD 3 5
Package fpBGA fpBGA
Pins 100 100
Grade C C
LX64V
LX64V-3F100C
LX64V-5F100C
LX128V
LX128V-32F208C
128
3.3
3.2 5
fpBGA
208
C
LX128V-5F208C
128
3.3
fpBGA
208
C
LX256V
LX256V-35F484C
256 64
3.3
3.5 5 3
fpBGA
484
C
LX256V-5F484C
256 64
3.3
fpBGA
484
C
LX64B
LX64B-3F100C
2.5
fpBGA
100
C
LX64B-5F100C
2.5
5
fpBGA
100
C
LX128B
LX128B-32F208C
128
2.5
3.2 5
fpBGA
208
C
LX128B-5F208C
128
2.5
fpBGA
208
C
LX256B
LX256B-35F484C
256 64
2.5
3.5 5 3
fpBGA
484
C
LX256B-5F484C
256 64
2.5
fpBGA
484
C
LX64C
LX64C-3F100C
1.8
fpBGA
100
C
LX64C-5F100C
1.8
5
fpBGA
100
C
LX128C
LX128C-32F208C
128
1.8
3.2 5
fpBGA
208
C
LX128C-5F208C
128
1.8
fpBGA
208
C
LX256C
LX256C-35F484C
256
1.8
3.5 5
fpBGA
484
C
LX256C-5F484C
256
1.8
fpBGA
484
C
68
Lattice Semiconductor
"E-Series" Commercial
Family LX64EV LX128EV LX256EV Part Number LX64EV-3F100C LX64EV-5F100C LX128EV-32F208C LX128EV-5F208C LX256EV-35F484C I/Os 64 64 128 128 256 64 Voltage 3.3 3.3 3.3 3.3 3.3 tPD 3 5 3.2 5 3.5 5 3
ispGDX2 Family Data Sheet
Package fpBGA fpBGA fpBGA fpBGA fpBGA
Pins 100 100 208 208 484
Grade C C C C C
SE LE D IS C CT OD NE TI VI NC UE ED S
LX256EV-5F484C 256 64 3.3 fpBGA 484 C LX64EB LX64EB-3F100C 2.5 fpBGA 100 C LX64EB-5F100C 2.5 5 fpBGA 100 C LX128EB LX128EB-32F208C 128 2.5 3.2 5 fpBGA 208 C LX128EB-5F208C 128 2.5 fpBGA 208 C LX256EB LX256EB-35F484C 256 64 2.5 3.5 5 3 fpBGA 484 C LX256EB-5F484C 256 64 2.5 fpBGA 484 C LX64EC LX64EC-3F100C 1.8 fpBGA 100 C LX64EC-5F100C 1.8 5 fpBGA 100 C LX128EC LX128EC-32F208C 128 1.8 3.2 5 fpBGA 208 C LX128EC-5F208C 128 1.8 fpBGA 208 C
"E-Series" Industrial
Voltage 3.3 2.5 tPD 5 5
Family
Part Number
I/Os 64 64
Package fpBGA fpBGA
Pins 100 100
Grade I I I I
LX64EV
LX64EV-5F100I
LX64EB
LX64EB-5F100I
LX64EC
LX64EC-5F100I
64
1.8
5
fpBGA
100 208
LX128EV LX128EV-5F208I
128
3.3
5
fpBGA
LX128EB LX128EB-5F208I LX256EV LX256EV-5F484I
128
2.5
5
fpBGA
208 208
I
LX128EC LX128EC-5F208I LX256EB LX256EB-5F484I
128
1.8
5
fpBGA
I I
256
3.3
5
fpBGA
484 484
256
2.5
5
fpBGA
I I
LX256EC LX256EC-5F484I
256
1.8
5
fpBGA
484
69
Lattice Semiconductor
Lead-Free Packaging Commercial
Family LX64V LX64B Part Number LX64V-3FN100C LX64V-5FN100C LX64B-3FN100C LX64B-5FN100C I/Os 64 64 64 64 64 64 Voltage 3.3 3.3 2.5 2.5 1.8 1.8 tPD 3.0 5.0 3.0 5.0 3.0 5.0
ispGDX2 Family Data Sheet
Package Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA
Pins 100 100 100 100 100 100
Grade C C C C C C C C C C C C C C
SE LE D IS C CT OD NE TI VI NC UE ED S
LX64C LX64C-3FN100C LX64C-5FN100C LX128V LX128B LX128V-32FN208C LX128V-5FN208C 128 128 128 128 256 256 256 256 3.3 3.3 2.5 1.8 3.3 3.3 2.5 1.8 3.2 5.0 5.0 5.0 3.5 5.0 5.0 5.0 Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA 208 208 208 208 484 484 484 484 LX128B-32FN208C LX128B-5FN208C 128 128 2.5 1.8 3.2 3.2 Lead-free fpBGA Lead-free fpBGA 208 208 LX128C LX256V LX256B LX128C-32FN208C LX128C-5FN208C LX256V-5FN484C LX256V-35FN484C LX256B-35FN484C LX256B-5FN484C 256 256 2.5 1.8 3.5 3.5 Lead-free fpBGA Lead-free fpBGA 484 484 LX256C LX256C-35FN484C LX256C-5FN484C
C C
C C
"E-Series" Commercial
Voltage 3.3 3.3 2.5 2.5 1.8 1.8 tPD 3.0 5.0 3.0 5.0 3.0 5.0
Family
Part Number
I/Os 64 64 64 64 64 64
Package
Pins 100 100 100 100 100 100
Grade C C C C C C
LX64EV LX64EB
LX64EV-3FN100C LX64EV-5FN100C
Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA
LX64EB-3FN100C LX64EB-5FN100C
LX64EC
LX64EC-3FN100C LX64EC-5FN100C
LX128EV LX128EB
LX128EV-32FN208C LX128EV-5FN208C
128 128 128 128 128 256 256 256 256 256
3.3 3.3 2.5 2.5 1.8 1.8 3.3 3.3 2.5 2.5 1.8 1.8
3.2 5.0 3.2 5.0 3.2 5.0 3.5 5.0 3.5 5.0 3.5 5.0
Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA
208 208 208 208 208 208 484 484 484 484 484 484
C C C C C C C C C C C C
LX128EB-32FN208C LX128EB-5FN208C
LX128EC LX256EV LX256EB
LX128EC-32FN208C LX128EC-5FN208C LX256EV-5FN484C LX256EV-35FN484C
128
LX256EB-35FN484C LX256EB-5FN484C
LX256EC
LX256EC-35FN484C LX256EC-5FN484C
256
70
Lattice Semiconductor
"E-Series" Industrial
Family LX64EV LX64EB LX64EC LX128EV LX128EB LX256EV LX256EB Part Number LX64EV-5FN100I LX64EB-5FN100I LX64EC-5FN100I LX128EV-5FN208I LX128EB-5FN208I LX256EV-5FN484I I/Os 64 64 64 128 128 128 256 256 256 Voltage 3.3 2.5 1.8 3.3 2.5 1.8 3.3 2.5 1.8 tPD 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
ispGDX2 Family Data Sheet
Package Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA Lead-free fpBGA
Pins 100 100 100 208 208 208 484 484 484
Grade I I I I I I I I I
SE LE D IS C CT OD NE TI VI NC UE ED S
LX128EC LX128EC-5FN208I LX256EB-5FN484I LX256EC LX256EC-5FN484I
71
Lattice Semiconductor
ispGDX2 Family Data Sheet
For Further Information
In addition to this data sheet, the following Lattice technical notes may be helpful when designing with the ispGDX2 Family: * * * * sysIO Design and Usage Guidelines (TN1000) sysCLOCK PLL Design and Usage Guidelines (TN1003) sysHSI Usage Guide (TN1020) Power Estimation in ispGDX2 Devices (TN1021)
SE LE D IS C CT OD NE TI VI NC UE ED S
72


▲Up To Search▲   

 
Price & Availability of LX64B-5FN100C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X